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ARTICLES

René Descartes” Curve-Drawing Devices:
Experiments in the Relations Between
Mechanical Motion and Symbolic Language

DAVID DENNIS

University of Texas at El Paso
El Paso, TX 79968-0514

Introduction

By the beginning of the seventeenth century it had become possible to represent a
wide variety of arithmetic concepts and relationships in the newly evolved language of
symbolic algebra [19]. Geometry, however, held a preeminent position as an older and
far more trusted form of mathematics. Throughout the scientific revolution geometry
continued to be thought of as the primary and most reliable form of mathematics, but
a continuing series of investigations took place that examined the extent to which
algebra and geometry might be compatible. These experiments in compatibility were
quite opposite from most of the ancient classics. Euclid, for example, describes in
Book 8-10 of the Elements a number of important theorems of number theory
cloaked awkwardly in a geometrical representation [16]." The experiments of the
seventeenth century, conversely, probed the possibilities of representing geometrical
concepts and constructions in the language of symbolic algebra. To what extent could
it be done? Would contradictions emerge if one moved freely back and forth between
geometric and algebraic representations?

Questions of appropriate forms of representation dominated the intellectual activi-
ties of seventeenth century Europe, not just in science and mathematics but perhaps
even more pervasively in religious, political, legal, and philosophical discussions [13,
24, 25]. Seen in the context of this social history it is not surprising that mathemati-
cians like René Descartes and G. W. von Leibniz would have seen their new symbolic
mathematical representations in the context of their extensive philosophical works.
Descartes’ Geometry [11] was originally published as an appendix to his larger
philosophical work, the Discourse on Method. Conversely, political thinkers like
Thomas Hobbes commented extensively on the latest developments in physics and
mathematics [25, 4]. Questions of the appropriate forms of scientific symbolism and
discourse were seen as closely connected to questions about the construction of the
new apparatuses of the modern state. This is particularly evident, for example, in the
work of the physicist Robert Boyle [25].

! See, for example, Book 10, Lemma 1 before Prop. 29, where Euclid generates all Pythagorean triples
geometrically even though he violates the dimensional integrity of his argument. Areas, in the form of
“similar plane numbers,” are multiplied by areas to yield areas. There seems to be no way to reconcile
dimension and still obtain the result.
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This paper will investigate in detail two of the curve-drawing constructions from the
Geometry of Descartes in such a way as to highlight the issue of the coordination of
multiple representations (see, e.g., [6]). The profound impact of Descartes’ mathemat-
ics was rooted in the bold and fluid ways in which he shifted between geometrical and
algebraic forms of representation, demonstrating the compatibility of these seemingly
separate forms of expression. Descartes is touted to students today as the originator of
analytic geometry, but nowhere in the Geometry did he ever graph an equation.
Curves were constructed from geometrical actions, many of which were pictured as
mechanical apparatuses. After curves had been drawn Descartes introduced coordi-
nates and then analyzed the curve-drawing actions in order to arrive at an equation
that represented the curve. Equations did not create curves; curves gave rise to
equations.2 Descartes used equations to create a taxonomy of curves [20].

It can be difficult for a person well schooled in modern mathematics to enter into
and appreciate the philosophical and linguistic issues involved in seventeenth century
mathematics and science. We have all been thoroughly trained in algebra and calculus
and have come to rely on this language and grammar as a dominant form of
mathematical representation. We inherently trust that these symbolic manipulations
will give results that are compatible with geometry; a trust that did not fully emerge in
mathematics until the early works of Euler more than a century after Descartes. Such
trust became possible because of an extensive set of representational experiments
conducted throughout the seventeenth century which tested the ability of symbolic
algebraic language to represent geometry faithfully [5, 7]. Descartes” Geometry is one
of the earliest and most notable of these linguistic experiments. Because of our
cultural trust in the reliability of symbolic languages applied to geometry, many of
those schooled in mathematics today have learned comparatively little about geometry
in its own right.

Descartes wrote for an audience with opposite predispositions. He assumed that
his readers were thoroughly acquainted with geometry, in particular the works of
Apollonius (ca. 200 BC) on conic sections [1, 15]. In order to appreciate the
accomplishments of Descartes one must be able to check back and forth between
representations and see that the results of symbolic algebraic manipulations are
consistent with independently established geometrical results. The seventeenth cen-
tury witnessed an increasingly subtle and persuasive series of such linguistic experi-
ments in the work of Roberval, Cavalieri, Pascal, Wallis, and Newton [8, 9]. These led
eventually to Leibniz’s creation of a general symbolic language capable of fully
representing all known geometry of his day, that being his “calculus” [5, 7).

Because many of the most simple and beautiful results of Apollonius are scarcely
known to modern mathematicians, it can be difficult to recreate one essential element
of the linguistic achievements of Descartes—checking algebraic manipulations against
independently established geometrical results. In this article I will ask the reader to
become a kind of intellectual Merlin and live history backwards. After we explore one
of Descartes’ curve-drawing devices, we will use the resulting bridge between
geometry and algebra to regain a compelling result from Apollonius concerning
hyperbolic tangents. The reader can choose to regard the investigation either as a
philosophical demonstration of the consistency between algebra and geometry or as a
simple analytical demonstration of a powerful ancient result of Apollonius. By adopt-

% Descartes’ contemporary, Fermat, did begin graphing equations but his work did not have nearly the
philosophical or scientific impact of Descartes’. Fermat’s original problematic contexts came from financial
work rather than engineering and mechanics.
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ing both views one gains a fully flexible cognitive feedback loop of the sort that my
students and I have found most enlightening [6].

I was recently discussing my work on curve-drawing devices and their possible
educational implications with a friend. His initial reaction was surprise: “Surely you
don’t advocate the revival of geometrical methods; progress in mathematics has been
made only to the extent to which geometry has been eliminated.” This claim has
historical validity, especially since the eighteenth century, but my response was that
such progress was possible only after mathematicians had achieved a basic faith in the
ability of algebraic language to represent and model geometry accurately. I argued
that one cannot appreciate the profundity of calculus unless one is aware of the issue
of coordination of independent representations. Many students seem to learn and
even master the manipulations of calculus without ever having questioned or tested
the language’s ability to model geometry precisely. Even Leibniz, no lover of geome-
try, would feel that such a student had missed the main point of his symbolic
achievement [5]. On this point my friend and I agreed.

Descartes’ curve-drawing devices poignantly raise the issue of technology and its
relation to mathematical investigation. During the seventeenth century there was a
distinct turning away from the classical Greek orientation that had been popular
during the Renaissance in favor of pragmatic and stoic Roman philosophy. During
much of the seventeenth century a class in “Geometry” would concern itself mainly
with the design of fortifications, siege engines, canals, water systems, and hoisting
devices—what we would call civil and mechanical engineering. Descartes’ Geometry
was not about static constructions and axiomatic proofs, but concerned itself instead
with mechanical motions and their possible representation by algebraic equations.
Classical problems were addressed, but they were all transformed into locus problems,
through the use of a wide variety of motions and devices that went far beyond the
classical restriction to straight-edge and compass. Descartes sought to build a geome-
try that included all curves whose construction he considered “clear and distinct” [11,
20]. An examination of his work shows that what he meant by this was any curve that
could be drawn with a “linkage,” i.e., a device made of hinged rigid rods. Descartes’
work indicates that he was well aware that this class of curves is exactly the class of all
algebraic curves, although he gave no formal proof of this. This theorem is scarcely
known among modern mathematicians, although it can be proved straightforwardly by
looking at linkages that add, subtract, multiply, divide, and generate integer powers
[3]. Descartes’ linkage for generating any integer power was used repeatedly in the
Geometry and has many interesting possibilities [10].

This transformation of geometry from classical static constructions to problems
involving motions and their resultant loci has once again raised itself in light of
modern computer technology, specifically the advent of dynamic geometry software
such as Cabri and Geometer’s Sketchpad. Many new educational and research
possibilities have emerged recently in response to these technological developments
[26]. It seems, indeed, that seventeenth century mechanical geometry may yet rise
from the ashes of history and regain a new electronic life in our mathematics
classrooms. (It has always had a life in our schools of engineering, where the finding of
equations that model motion has always been a fundamental concern.) My own
explorations of seventeenth century dynamic geometry have been conducted with a
combination of physical models and devices along with computer animations made
using Geometer’s Sketchpad [18]. The first figure in this paper is taken directly from
Descartes, but all the others were made using Geometer’s Sketchpad. This software
allows a more authentic historical exploration since curves are generated from
geometrical actions rather than as the graphs of equations. Static figures cannot vividly
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convey the sense of motion that is necessary for a complete understanding of these
devices.® In the generation of the figures in this paper no equations were typed into
the computer.

Ficure 1 is reproduced from the (original) 1637 edition of Descartes’ Geometry
[11, p. 50]. Descartes described the device as follows:

Suppose the curve EC to be described by the intersection of the ruler GL
and the rectilinear plane figure NKL, whose side KN is produced indefi-
nitely in the direction of C, and which, being moved in the same plane in
such a way that its diameter KL always coincides with some part of the
line BA (produced in both directions), imparts to the ruler GL a rotary
motion about G (the ruler being hinged to the figure NKL at L). If I wish
to find out to what class this curve belongs, I choose a straight line, as AB,
to which to refer all its points, and on AB I choose a point A at which to
begin the investigation. I say “choose this and that,” because we are free to
choose what we will, for, while it is necessary to use care in the choice, in
order to make the equation as short and simple as possible, yet no matter
what line I should take instead of AB the curve would always prove to be of
the same class, a fact easily demonstrated.

FIGURE 1
Descartes’ Hyperbolic Device

Descartes addressed here several of his main points concerning the relations
between geometrical actions and their symbolic representations. His “classes of
curves” refer to the use of algebraic degrees to create a taxonomy of curves. He is
asserting that the algebraic degree of an equation representing a curve is independent
of how one chooses to impose a coordinate system. Scale, starting point, and even the
angle between axes will not change the degree of the equation, although this “fact
easily demonstrated” is never given anything like a formal proof in the Geometry.
Descartes also mentioned here the issue of a judicious choice of coordinates, an
important scientific issue that goes largely unaddressed in modern mathematics
curricula until an advanced level, at which point geometry is scarcely mentioned.

Descartes went on to find the equation of the curve in Ficure 1 as follows.
Introduce the variables (Descartes used the term “unknown and indeterminate

% Animated figures made in Geometer’s Sketchpad are available from the author by e-mail
(dennis@math.utep.edu).
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quantities”) AB =y, BC =x (in modern notation, C = (x, y)), and then the constants
(“known quantities”) GA=a, KL =Db, and NL =c. Descartes routinely used the
lower case letters x, y, and z as variables, and «a, b, and ¢ as constants; our modern
convention stems from his usage. Descartes, however, had no convention about which
variable was used horizontally, or in which direction (right or left) a variable was
measured (here, x is measured to the left). There was, in general, no demand that x
and y be measured at right angles to each other. The variables were tailored to the
geometric situation. There was a very hesitant use of negative values (often called
“false roots”), and in most geometric situations they were avoided.

Continuing with the derivation, since the triangles KLN and KBC are similar, we

have . —yi-, hence BK = éx, hence BL = éx—b. From this it follows that
b BK c c

AL=y+BL=y+ —x—b. Since triangles LBC and LAG are similar, we have

% = % This implies the following chain of equations:

5 - Z;Z < x(y+%x—b)=a(%x—b)
—C-x—b y+zx—b

ab

e xy + %xz—bx= — x—ab
e x?=cx— %xy+ax—ac. (1)

Descartes left the equation in this form because he wished to emphasize its second
degree. He concluded that the curve is a hyperbola. How does this follow? As we said
before Descartes assumed that his readers were well acquainted with Apollonius. We
will return to this issue shortly.

If one continues to let the triangle NLK rise along the vertical line, and keeps
tracing the locus of the intersection of GL with NK, the lines will eventually become
parallel (see Ficure 2), and after that the other branch of the hyperbola will appear
(see Ficure 3).

These figures were made with Geometer’s Sketchpad, although I have altered
slightly the values of the constants @, b, and ¢ from those in Ficure 1. In Ficure 2, the
line KN is in the asymptotic position, i.e., parallel to GL. I will hereafter refer to this
particular position of the point K, as point O. In this position triangles NLK and

GAL are similar, so AK=AO = % +b (the y-intercept of the asymptote). The
slope of the asymptote is the same as the fixed slope of KN, i.e., b/c. (Recall that
KL=b, NL=c, and GA=a.)

To rewrite Equation 1 using A as the origin in the usual modern sense, with x
measured positively to the right, we can substitute —x for x. With this substitution,
solving Equation 1 for y yields

y=ab%+%x+(%+b). (2)

In Equation 2, the linear equation of the asymptote appears as the last two terms.
In Ficure 3, I have shown, to the right, the lengths that represent the values of the
three terms in Equation 2, for the point P. (The labels 1, 2, and 3 represent,
respectively, the inverse term, the linear term, and the constant term.) Term 3
accounts for the rise from the x-axis to the level of point O (the intercept of the
asymptote). Adding term 2 raises one to the level of the asymptote, and term 1
completes the ordinate to the curve.
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FIGURE 2 FIGURE 3
Descartes’ Device in the Asymptotic Geometrical Display of the Terms in
Position the Hyperbolic Equation

As a geometric construction, the hyperbola is drawn from parameters that specify
the angle between the asymptotes (£ NKL), and a point on the curve (G). If one
changes the position of the point N without changing the angle £ NKL, the curve is
unaffected, as in Ficure 4. The derivation of the equation depends only on similarity,
and not on having perpendicular coordinates. As long as GA (which determines the
coordinate system) is parallel to NL, the derivation of the equation is the same except
for the values of the constants NL =¢, and GA =a (both have become larger in
Ficure 4). Of course this equation is in the oblique coordinate system of the lines GA
(x-axis) and AK (y-axis). It is the same curve geometrically, with the same form of
equation, but with new constant values that refer to an oblique coordinate system. As
long as angle £ NKL remains the same, and G is taken at the same distance from the
line KL, the device will draw the same curve. This form of a hyperbolic equation, as
an inverse term plus linear terms, depends only on using at least one of the
asymptotes as an axis.

FIGURE 4
Hyperbola in Skewed Coordinates


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 70, NO. 3, JUNE 1997 169

I have encountered many students who are well acquainted with the function y = %,
and yet have no idea that its graph is an hyperbola. Descartes’ construction can be
adjusted to draw right hyperbolas. Consider the special case in which the line KN is
parallel to the x-axis (see Ficure 5). The point G is on the negative x-axis. Let
KC=x, and AK=y (ie, C=(x,y)), AG=a, and KL =b. Now AL =y — b, and

KC A
since triangles LKC, and LAG are similar, we have XL = A—g or, equivalently,

x a .
7= m Hence the curve has equation

y=abt +b. (3)

A vertical translation by b would move the origin to the point O, and letting
a=b=1, would put G at the vertex (=1, —1), yielding the curve with equation

y=1/x.

FIGURE 5
Device Adjusted to Draw Right Hyperbolas

Equation 3 can be seen as a special case of Equation 2, obtained by substituting o
for ¢, where ¢ is thought of as the horizontal distance from L to the line KN. All
translations and rescalings of the multiplicative inverse function can be directly seen as
special members of the family of hyperbolas, using this construction.

Appollonius Regained

How do we know that these curves are, in fact, hyperbolas? Descartes said that this is
implied by Equation 1. In his commentaries on Descartes, van Schooten gives us
more detail [11, p. 55, note 86]. Once again these mathematicians assumed that their
readers were familiar with a variety of ratio properties from Book 2 of the Conics of
Apollonius [1, 15] that are equivalent to Equation 1. I will not give a full set of formal
proofs, but will instead suggest means for exploring these relations.

Several beautiful theorems of Apollonius concerning the relations between tangents
and asymptotes are easily explored in this setting. Using the asymptotes of the curve in
Ficure 5 as edges to define rectangles, one sees that the points on the curve define a
family of rectangles, all with the same area (see Ficure 6). Indeed, if M and N are any
two points on the curve, Equation 3 implies that OPMS and OQNR both have area
equal to a-b, the product of the constants used in drawing the curve. Another
interesting geometric property is that the triangles TSM and NQU are always
congruent. This congruence provides one way to dissect and compare these rectangles
in a geometric manner [17].
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N‘
s M
N
P o U
FIGURE 6

Hyperbola as a Family of Equal Area Rectangles

Approaching these equations analytically, assume that the curve in Ficure 6 has the
equation x-y =k (using O as the origin). Let M = (m,k/m) and N = (n, k/m), i.e.,
k

OP=m and OQ=n. The line through M and N has equation y= — _—x+

(k + k . Hence TO = % + E, and, since SO = % this implies that TS = %—
NQ. Slnce triangles TSM and NQU are clearly similar, TS = NQ implies that they are
congruent and that TM = NU. Now let the points M and N get close to each other;
then the line MN gets close to a tangent line, and one can perceive a theorem of
Apollonius:

Given any tangent line to a hyperbola, the segment of the tangent con-
tained between the two asymptotes is always bisected by the point of
tangency to the curve [1, 15].

This property is a defining characteristic of hyperbolas. This simple and beautiful
1

theorem immediately implies, among other things, that the derivative of z is _0 .

(Look at the congruent triangles and compute the rise over run for the tangent.) This
gives a student an independent geometrical check on the validity of the calculus
derivation.

This bisection property of hyperbolic tangents is not restricted to the right hyper-
bola. Looking back at Ficure 3 and Equation 2, one sees that any hyperbola
coordinatized along both its asymptotes will always have an equation of the form
x-y =k for some constant k. To see this, subtract off the linear and constant terms
from the y-coordinate, and then rescale the x-coordinates by a constant factor that
projects them in the asymptotic direction (in Ficure 7 the new x-coordinate in this
skew system is OQ). In the general case the curve can be seen as the set of corners of
a family of equi-angular parallelograms, all with the same area. In Ficure 7, for any
two points M and N on the curve, the parallelograms OQNR and OPMS have equal

X

0
FIGURE 7
Bisection Property of Hyperbolic Tangents
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areas. Since the triangles TSM and NQU are congruent, by letting M and N get close
together one sees that any tangent segment TU is bisected by the point of tangency
(M or N).

An alternative view of the situations just described is to imagine any line parallel to
TU meeting the asymptotes and the curve in corresponding points T', M’, and U’.
Then the product T'M'-M'U’ = TM -MU. That is to say, parallel chords between the
asymptotes of a hyperbola are divided by the curve into pieces with a constant
product. This follows from our discussion, because the pieces are constant projections
of the sides of the parallelograms just discussed. This form of the statement was most
often used by van Schooten, Newton, Euler and others in the seventeenth century.
This statement (from Book 2 of Apollonius [1, 15]) was traditionally used as an
identifying property of hyperbolas. This constant product was given as a proof by van
Schooten that the curve drawn by Descartes’ device was indeed a hyperbola [11,
p- 55]. Apollonius derived these properties directly from sections of a general cone.

In this way it is possible to investigate hyperbolas, using both geometric and
algebraic representations, to create a complete cognitive feedback loop. Neither
representation is used as a foundation for proof; instead, one is led to a belief in a
relative consistency between certain aspects of geometry and algebra through check-
ing back and forth between alternative representations. A calculus derivation of the
derivative of y =1/x becomes, in this setting, a limited special case of the bisection
property of hyperbolic tangents. It can be very satisfying to see symbolic algebra
arrange itself into answers that are consistent with physical and geometric experience.
Students of calculus can then experience the elation of Leibniz, as they build up a
vocabulary of viable notation, capable of being checked against independently verifi-
able physical and geometric experience. Mathematical language is then seen as a
powerful code for aspects of experience, rather than as the sole dictator of truth.

Conchoids Generalized from Hyperbolas

The hyperbolic device is only the beginning of what appears in Descartes” Geometry.
He discussed several cases where curve-drawing constructions can be progressively
iterated to produce curves of higher and higher algebraic degree [11, 10]. It is usually
mentioned in histories of mathematics that Descartes was the first to classify curves
according to the algebraic degree of their equations. This is not quite accurate.
Descartes classified curves according to pairs of algebraic degrees; i.e., lines and
conics form his first class (he used the term genre), curves with third or fourth degree
equations form his second class, etc. [11, p. 48]. This classification is quite natural if
one is working with mechanical linkages and loci. With most examples of iterated
linkage, each iteration raises the degree of the curve’s equation by two, with some
special cases that collapse back to an odd algebraic degree [7].* What follows is an
example of such an interation based on the hyperbolic device.

* Descartes’ linkages led directly to Newton’s universal method for drawing conics, which is essentially a
projective method [7, 23]. This same classification by pairs of degrees is used in modern topology in the
definition of “genus.” The “genus” of a non-singular algebraic plane curve can be thought of topologically as
the number of “handles” on the curve when defined in complex projective space. In complex projective
space, linear and quadratic non-singular curves have genus 0, and are topologically sphere-like. Similarly,
curves of degrees 3 and 4 are topologically torus-like, and have genus 1. Curves of degrees 5 and 6 are
topologically double-holed and have genus 2, etc. In the real model, (i.e., when considering only real
solutions of one real equation in 2 variables) the genus 0 curves consist of at most one oval when you join up
the asymptotes. The genus 1 curves will have two ovals, which is what you’d expect when cutting through a
toric by a plane, etc. (This comment was made to me by Paul Pedersen.)
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Descartes generalized the previous hyperbola construction method by replacing the
triangle KLN with any previously constructed curve. For example, let a circle with
center L be moved along one axis and let the points C and C’ be the intersections of
the circle with the line LG, where G is any fixed point in the plane and LG is a ruler
hinged at point L just as in the hyperbolic device (see Ficure 8). Then C traces out a
curve of degree four, known in ancient times as a conchoid [11, p. 55]. The two
geometric parameters involved in the device are the radius of the circle (r), and the
distance (a) between the point G and the axis along which L moves.

Ficure 8 shows three examples of conchoids for ¢ >r, a=r, and a <r. If the
curve is coordinatized along the path of L, and a perpendicular line through G (OG),
then its equation can be found by looking at the similar triangles GOL and CXL (top
of Ficure 8). Since GO=a, LC=r, CX=y, OX=x, and XL =yr®—y?, one

‘/2_y2 ‘/rz_yz +x

Yy
This is equivalent to x*y®=(r*—y*)(a — y)?, an equation of fourth degree or of
Descartes” second class. (The squared form of the equation has both branches of the
curve, above and below the axis, as solutions.)

obtains the ratios of the legs of the triangles as follows:

G
a=r
axis L K
o
a<r
axis L K
I
FIGURE 8

Conchoids Drawn by Dragging a Circle Along a Line

This example demonstrates Descartes” claim that, as one uses previously con-
structed curves to draw new curves, one gets chains of constructed curves that go up
by pairs of algebraic degrees. Descartes called the conchoid a curve of the second
class, i.e., of degree three or four. Dragging any rigid conic-sectioned shape along the
axis, and drawing a curve in this manner will produce curves in the second class.
Dragging curves of the second class will produce curves of the third class (i.e., degree
five or six), etc, Descartes demonstrated this general principle through many examples
[11, 7, 10}, but he offered nothing like a formal proof, either geometric or algebraic.
His definition of curve classes was justified by his geometric experience.

Notice that when a <r, the point G becomes a cusp or a crossover point. When
singularities like cusps or crossover points occur, these tend to occur at important
parts of the apparatus, like a pivot point (such as G) or a point on an axis of motion.
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Other important examples of this phenomena can be found in Newton’s notebooks
[22, 23]. I am not asserting any particular or explicit mathematical theorem here. This
general observation is based upon my own historical research and empirical experi-
ence with curve-drawing devices. There are probably several ways to make this
observation into an explicit mathematical statement, subject to proof (Newton at-
tempted several [23]). There are many open questions concerning these forms of
curve iteration and the relations between the parts of the physical devices and the
singularities of the curves [7]. Students might benefit from such empirical experience
—regardless of the extent to which they eventually formalize that experience in
strictly algebraic or logical language. An instinctual sense of where curve singularities
might occur is fundamentally useful in many sciences [2]. Modern computer software
makes such investigations routinely possible with a minimum of technical expertise.

Conclusion

Descartes wrote his Rules for the Direction of the Mind [12] in 1625, twelve years
before he would publish his famous Geometry. In this earlier work he emphasized the
importance of making strong connections between physical actions and their possible
representations in diagrams and language. Here are a few quotes:

Rule 13: If we understand a problem perfectly, it should be considered
apart from all superfluous concepts, reduced to its simplest form, and
divided by enumeration into the smallest possible parts.

Rule 14: The same problem should be understood as relating to the actual
extension of bodies and at the same time should be completely represented
by diagrams to the imagination, for thus will it be much more distinctly
perceived by the intellect.

Rule 15: It is usually helpful, also, to draw these diagrams and observe
them through the external senses, so that by this means our thought can
more easily remain attentive.

These lines from Descartes sound much like parts of the hands-on, problem-solving
educational philosophy of mathematics put forth by the National Council of Teachers
of Mathematics [21]. Descartes’ entire approach to mathematics had problem solving
as its foundation [14], but we must not allow ourselves to read into him too modern a
perspective. He was constructing a new method of mathematical representation that
responded to both the new symbolic language of his time (algebra) and to the new
technology of his time (mechanical engineering). He was not seeking the broad
educational goals of the NCTM. In fact, his Geometry was not widely read in the
seventeenth century until it was republished, in 1657, with extensive commentaries by
Franz van Schooten.

Nonetheless, Descartes” approach to geometry through curve-drawing devices and
locus problems has important implications for education. His work connects important
classical and Arabic traditions with modern algebraic formalisms [7]. It provides the
missing linkages (pun intended). These linkage and loci problems, combined with the
new dynamic geometry software, allow a new kind of exploration of curves that could
go far towards ending the isolation of geometry in our mathematics curriculum. One
can use geometrical curve generation to recreate calculus concepts such as tangents
and areas in a much more elementary and physical setting [7, 8, 10], as well as to
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explore complicated questions about algebraic curves left open since the seventeenth
century [7, 23]. Computer graphic techniques have already led to new branches of
mathematics, such as fractals. Perhaps a new phase of computer-assisted empirical
geometrical investigation of curves and surfaces has already begun. If this new
beginning proves as revolutionary as the century that began with Descartes” Geome-
try, then we are in for some very exciting times.
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Introduction

The knight is the only piece in chess that does not move in a straight line. Instead, it
moves in an “L”—two squares in either a vertical or horizontal direction and then one
square in a perpendicular direction. It is the strangeness of this move that has made
the Knight’s Tour Problem one of the most intriguing in all of recreational mathemat-
ics: Can a knight visit each square of a chessboard by a sequence of knight’s moves,
and finish on the same square as it began? Since a chessboard can be represented as a
graph in which each vertex corresponds to a square, and edges correspond to those
pairs of squares connected by a knight's move (Ficure 1 illustrates this for a 4 X 4
board), finding a knight's tour amounts to finding a Hamiltonian cycle in the
corresponding graph, a notoriously difficult general problem in graph theory (see [5]).
However, we can easily see that there is no knight’s tour for a 4 X 4 board since any
Hamiltonian cycle would have to include the four edges incident to the two corner
vertices indicated in Ficure 1; this is impossible since these four edges already form a
cycle that includes only four vertices.

FIGURE 1
Representing a chessboard as a graph

We can also notice that the vertices in a knight’s graph can be colored black and
white so that every edge joins a black vertex and a white vertex. Such a graph is called
bipartite. Since any cycle in a bipartite graph must have an even number of edges, we
conclude that an m X n board with m and n odd cannot have a knight’s tour, because
the corresponding Hamiltonian cycle would have an odd number of edges.

There are several excellent sources for the history of this problem. We particularly
recommend the discussion by W. W. Rouse Ball ([1]), which includes contributions by
Euler as well as an ingenious method by the German mathematician H. C. Warnsdorff,
dating from 1823, in which the knight is always moved to one of the squares from
which it will have the fewest open moves. Combining this rule with Euler’s techniques
provides a remarkably efficient way to find knight’s tours on various boards. Martin
Gardner ([3] presents several other problems involving knights, as well as giving
S. W. Golomb’s elegant proof that no 4 Xn board has a knight's tour. In 1991,
Schwenk ([4]) answered the obvious question: Which rectangular chessboards have a
knight’s tour?
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THEOREM. An m X n chessboard with m <n has a knight’s tour unless one or more
of these conditions holds:

(1) m and n are both odd;
Q) m=1,2, or 4; or
3) m=3andn=4,86, or 8.

But what if we allow the knight to move off the side of the board and then return to
the board on the opposite side, as in some video games? (Such moves were used in [2]
to find Hamiltonian tours for checkers.) For example, with this change it is now
possible to find a knight’s tour of a 5 X 5 board—in fact, Warnsdorff’s method can be
used here—since in Ficure 2 a knight at square 25 can return to square 1 in a legal
move by going off the bottom edge.

1114/ 9|20 3
24/19] 2 |15{10
13| 8 |23| 4 |21
18(25| 6 |11|16
7112]17|122| 5

FIGURE 2
Knight’s tour of a 5 X 5 board on a torus
This is equivalent to changing the flat chessboard into a torus (i.e., a doughnut) by
gluing the top edge to the bottom edge (which creates a cylinder) and then gluing the
left and right edges (which brings the two ends of the cylinder together). So we now
pose the question: Which rectangular chessboards have a knight’s tour on a torus?

Knight's Tours on a Torus

In this section we will prove that, on a torus, every rectangular board has a tour. First,
we establish some useful notation.

A knight has eight possible moves as shown in Ficure 3. Each move has an
arithmetic description (x, y) where x indicates how many squares the knight moves
to the right and y indicates how many squares down. Notice the symmetry between
moves a, b, ¢, d and a, B, 7y, 8, respectively; this will become important later.

a b ¢ d @ B v )
@D (12 (-2,-1) @L-2 @-D @12 (-2 (-1,-2
FIGURE 3
The eight knight moves
Our strategy will be to provide explicit tours for boards with a small number of rows

(but any number of columns) and then to show how to ‘stack’ these boards together to
form tours for arbitrary boards.

1Xn and 2 X n boards You can easily tour any 1 Xn board by starting at any
square and making move B =(1,2) n consecutive times. This is illustrated in Ficure 4
for a 1 X 6 board. Similarly, you can tour any 2 X n board by making move (1, 2) until

112{3|415(6(7
m2’3’4l5|6J 9|8(14(13|12|11{10

FIGURE 4
Tours for 1 X 6 and 2 X 7 boards
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you get stuck half way through, at which point you make move (2,1) once, and then
continue with move (—1,2) until every square has been visited and you can take move
(=2, = 1) back to the starting point. This is illustrated in Ficure 4 for a 2 X 7 board.

3 X n boards You can tour any 3 X n board, as long as n is not a multiple of 5, by
repeating the three moves (2,1), (2,1), and (1, —2) over and over again. If n is a
multiple of 5 you can repeat the moves (2,1), (2,1), and (=1, —2) over and over
instead. These two cases are illustrated in Ficure 5 for a 3 X 8 and a 3 X 10 board.
Notice that in neither case do you ever go off the top or bottom edge.

1116|7 (22|13} 4 {19|10| | 1|22(13| 4 |25|16| 7 |28|18|10
20{11| 2 (17| 8(23(14| 5| |20(11| 2 |23|14| 5|26|17| 8 |29
15]621{12| 3|18| 9|24| | 930(21|12] 3 |24|15| 6 27|18

FIGURE 5
Tours for 3 X 8 and 3 X 10 boards

4 X n boards There are two cases. If n is odd you can alternate moves (1,2) and
(1, —2) until you get stuck half way through (and the squares in the first and third
rows have all been visited), at which point you make move (2, —1), from 18 to 19 in
Ficure 6, and then continue alternating with moves (—1,2) and (—1, —2) until every
square has been visited (at 36) and you can take move (—2,1) back to the starting
point. If n is even you again alternate moves (1,2) and (1, —2), but this time you get
stuck a quarter of the way through, at 10 in Ficure 6, at which point you make move
(2,1); then alternate (=1, —2) and (—1,2) until you get stuck (at 20) and make
move (—2,1); next, alternate (1, —2) and (1,2) until you get stuck (at 30) and make
move (2, 1); finally, alternate (—1,2) and (-1, —2) until every square has been visited
(at 40) and you can take move (—2, 1) back to the starting point. These two cases are
illustrated in Ficure 6 for a 4 X 9 and a 4 X 10 board. Notice in each case that only
the last move goes off the top or bottom edge.

1111{ 313} 5{15| 7 [17| 9 1122| 3|24/ 5 (26| 7 (28| 9|30

29|19|27)35|25|33|23|31|21 12]31/20|39{18|37|16|35(14|33

10(2|12| 4 [14| 6 |16]| 8 |18 21| 2 (23| 4|25/ 6 (27| 8 |29/10

20|28(36|26|34|24|32|22|30 32/11|40|19|38|17|36(15|34|13
FIGURE 6

Tours for 4 X 9 and 4 X 10 boards
Notice that at this point we have already taken care of exceptions (2) and (3) of
Schwenk’s theorem. Strictly speaking, all that remains to do is the case of an odd by
odd board on a torus. However, in part for the sake of completeness and in part
because we like the constructions involved, we will instead consider all remaining

boards.

Even X odd boards In order to show that any board with an even number of rows
and an odd number of columns can be toured, we will simply stack together an
appropriate number of boards each having two rows. However, a difficulty arises since
the tour of a 2 Xn board shown in Ficure 4 uses the top and bottom edge of the
board many times. Fortunately, if a 2 X n board has an odd number of columns, there
is a tour that does not use the top and bottom edge: you simply alternate moves (2, 1)
and (2, —1). This is illustrated in Ficure 7 for a 2 X 7 board.

11591337 |11
8121 2|6(10/14) 4

FIGURE 7
Alternate tour for a 2 X 7 board
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It is easy to stack any number of these boards on top of one another. We illustrate
this by creating a tour for a 4 X 7 board from the tours of two 2 X 7 boards. It is
perhaps best to think in terms of the corresponding graphs. The idea—used by Euler
—is to remove two edges, one from each Hamiltonian cycle, and then add two edges
that join the two pieces into a single cycle. The only trick is to make sure the edges
you add correspond to legal knight moves.

In Ficure 8 we remove edge 2—3 from the top board and edge 12—13 from the
bottom board, and then add edge 2—12 and edge 3-13, both of which correspond to
legal knight moves. Still thinking in terms of the graph, it is now routine to do a
knight’s tour by beginning at square 1 on the top board, going to square 2, then to the
bottom board at square 12, at which point we travel backwards on the bottom board
until we reach square 13 from which we return to the top board at square 3 and finish
the tour on the top board by taking the squares in order. The result, with the
appropriate renumbering, is shown in Ficure 8.

FIGURE 8
Stacking two 2 X 7 boards

It is clear that this process can be continued indefinitely; for example, we can stack
another 2 X 7 board on top of the 4 X 7 board by again removing edge 2-3 from the
top board and removing edge 26—27 from the bottom board. In this way we can
construct a knight’s tour for any board with an even number of rows and an odd
number of columns (and, by symmetry, any board with an odd number of rows and an
even number of columns).

Odd X odd boards We can now take care of exception (1) in Schwenk’s theorem. In
order to do a board with an odd number of rows (and an odd number of columns) we
simply stack a board with 3 rows on top of a board with an even number of rows as
done above. We illustrate this for a 7 X 7 board in Ficure 9 using edge 5-6 from the
top board and edge 19-20 from the bottom board.

1110|197 {16| 4 |13 44| 4 |41
14| 2 111|20]| 8 |17 48(36(45

9 (18 16| 3 |12 21 3 (40|49
6 8 |32|28

31127 29|25| 7

FIGURE 9
A7 X 7 board
Even X even boards We consider two cases. First, if the number of rows is divisible
by 4, then we can stack multiple copies of 4 X n boards. We illustrate this in Frcure 10
for an 8 X 6 board.
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4]14] 3]16]5 18 714]3]16]5]18
8 [19]12]23[10]21 8 119]12]23[10[21
1312151417/ 6 13| 2|15 4 [17] 6
20 7 #&11]22] 9 20| 7 B11|22] 9
%14316518 38|27]40|29|42
sTiohzm3l0l2 32(43[36]47[34[45
3M2hslal7]e 37/26/39]2841{20
EL CIIE 44)31%4 35| 46/33

FIGURE 10

An 8 X 6 board

We remove edge 1-24 from each board—remember this was the only move that
used the top and bottom edge of the board—and join the 24 at the top to the 1 at the
bottom and the 24 at the bottom to the 1 at the top. By noticing the position of the 1
and the 48 in the 8 X 6 board, we see that we can repeat this procedure as many times
as we like, simply adding four rows at a time.

The second case—where the number of rows is even but not divisible by 4—is a
good bit harder. This will be done by showing how to stack a board with 6 rows on a
board with 4k rows. First we show how to join two 3 X n boards to get the 6 X n
board which we need. From the top 3 X n board remove the edge that joins the next
to last square in the second row to the first square in the last row—for example, edge
14-15 in Ficure 11. From the bottom 3 X n board remove the edge that joins the next
to last square in the first row to the second from last square in the last row—that is,
edge 19-18 in Ficure 11. We can now add two edges in the obvious way to create a
Hamiltonian cycle—namely, edges 15-19 and 14-18 in Ficure 11. Notice that in the
resulting tour of the board with 6 rows, the next to the last square in the second row is
connected to the second from last square in the last row—that is, 14-15 in Ficure 11.
It is this edge that we will remove in the next step.

1140} 7|46|13| 4 |43|10
44/11| 2 |41| 8 471441 5
6145(12| 3 |42| 9 |48
32|17(26(35(20(29138123
3722|31|16|25|34|19|28
18(27(36(21|30¢15124(33

FIGURE 11
A 6 X 8 board

Next, we get a tour for the board with 4k rows exactly as we did previously except
that we begin the tour in the top row five squares from the right-hand edge of the
board rather than in the upper left-hand corner as we usually do—notice the
placement of the 1 in the 4 X 8 board in Ficure 12. This is so that we will end up in
the bottom row three squares from the right-hand edge of the board (at 32 in Ficure
12), and we can then join the two boards with two legal knight moves—namely,
14-32 and 1-15 in Ficure 12.
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1]40| 7 |46]13| 4 43|10 1172| 7|78|13| 4 |75|10
44[11] 2|41 8 [47/44 5 76112733794%
39| 6145(12| 3 |42| 9 |48 71| 6 |77(12| 3 (74| 9 |80
32|17|26|35|20/29/38)|23 64|49 /58|67|52|61|70|55
37(22|31{16|25|34|19|28 69|54|63|48|57|66|51|60
18(27(36|21 30 24|33 50(59|68|53 |62 #7156 |65
22] 7 [24A18] 3 |20] 5 254023 48129)44/27 |42
291227102516 31[14 18]35|20|37|22|31]16|33
612318 1712 19| 4 |21 41(24/39/30)45|28|43|26
13]28[11]26] 9 15 30 34|19|38|21 38%32 17
FIGURE 12

A 10 X 8 board
This completes the proof of the following theorem.
THEOREM. On a torus, every rectangular chessboard has a knight’s tour.

Tours on Square Boards

In particular, all square boards have knight’s tours on a torus. In this section we shall
see that tours on square boards can have patterns that are far nicer than those offered
by the foregoing inductive procedure. Moreover, we shall see that the attractiveness of
these patterns is due to an underlying algebraic structure. Interestingly, a Fulani
astronomer and mathematician, Muhammad Ibn Muhammad, used similar knight’s
patterns in his native northern Nigeria to produce magic squares at just about the
same time that Euler was working on knight’s tours in Europe (see [7], 137-151). We
will deal with n X n boards in three cases.

Case 1: n# 5k Simply repeat the move (2,1) n — 1 times—we call this a stroll.
Then use the move (1, —2)—a shift—once, and resume the stroll, shifting every n
moves, until you return to the starting point. Ficure 13 shows the resulting tour for a
7 X 7 board. (Notice that the result is a magic square; in fact, this procedure produces
a magic square for all n not a multiple of 2, 3, or 5; see [6].)

1(24|47|21|37|11|34
12|35| 2 |25|48|15|38 1112]23| 9120
16|39(13|29| 3 |26/49 10({16| 2 |13 |24
27(43(17|40(14|30| 4 14125/ 6 (17| 3
31| 5|28(44(18 41| 8 18| 4 (15(21| 7
421 9|32|6(22|45|19 221 8|19 5|11
46(20|36(10({33| 7 |23
FIGURE 13

Tours for 7 X 7 and 5 X 5 boards

Case 2: n# 3k The reason the previous pattern does not work when n is a multiple
of 5 is that eventually the shift can’t be made. Obviously, the thing to do is to make a
different shift. So we use the shift (—1, —2) instead. This works for all n not a
multiple of 3. We illustrate this in Ficure 13 for a 5 X 5 board. (Notice that the result
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is a semi-magic square; in fact, this procedure produces a semi-magic square for all n
not a multiple of 2 or 3; moreover, it is only the main diagonal whose sum fails to be
correct in each case; see [6].)

Case 3: n= 15k Unfortunately, this still leaves us having to deal with square boards
where n is a multiple of 15. Our approach in this case will be very similar to the
previous two cases, but the actual details turn out to be considerably more involved.
Therefore, we delay our discussion of this case until the Appendix, and turn now to an
alternate approach.

An Algebraic Approach

Anyone familiar with the concept of a group will have sensed that there is an
underlying algebraic structure for these tours. For example, it is clear that if
ged(m, n) = 1 where, without loss, we take n to be odd, then there is a tour of the
m X n board using only the move (2, 1). This, of course, is because the element (2,1)
generates the group Z, X Z,,.

Similarly, we see that in the tour of the 7 X 7 board in Ficure 13, the first stroll,
which uses (2,1) six times, yields the subgroup of Z, X Z, generated by the element
(2, 1)—namely, {(0,0),(2,1),(4,2),(6,3),(1,4),(3, 5), (5,6)}. The shift (1, —2) then
moves us to a different coset of this subgroup, where the stroll now takes us through
this new coset. In this way, we tour the entire group, one coset at a time.

In order to see how this works in general for a square board, we label the n X n
board by the elements of Z, X Z, viewed as vectors (a, b), a,b € Z,,. In particular,
the upper left-hand corner is labeled (0,0). We can then make a change of coordi-

A ,
nates, such as (a,b) =c¢(2,1) +d(1, -2).

So, for example, a knight at position (@, b) = (2,1) in the original coordinates would
be at (¢, d) = (1,0) under the change of coordinates, or a knight at (4,2) would now
be at (2,0). In this way, the 7 X 7 knight’s tour in Ficure 13, under the change of
coordinates, becomes the 1-step rook’s tour in Ficure 14. (Such tours are discussed
in [2].)

2|3/4(5|6|7
911011112 |13 |14
17118119|20|21|{15|16
25|26(27(28|22]|23|24
33|34|35|29|30|31|32
41142136]37|38|39|40
49143 |44145|46|47 |48

FIGURE 14
A 1-step rook’s tour

Thus, we can turn the knight’s tour problem into an obviously simpler rook’s tour

problem, a process that worked in this case because (2, 1) and (1, —2) form a basis for
Z; X Z. This happened, in turn, because det(f B ;

) is a unit in the ring Z,. This
particular change of coordinates, therefore, will work as long as 5 does not divide n.

On the other hand, since det(? '2) =4, the change of coordinates given by
(a,b) =c(2,1) +d(—2,1) will work as long as n is odd. It is worth noting, however,
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that the two tour problems are not equivalent. For example, the knight’s tour for the
5 X 5 board in Ficure 13 does not become a rook’s tour under this particular change
of variables. This is not at all surprising since a knight has more moves than a 1-step
rook. Similarly, the change of variables given by (a, b) = ¢(2,1) + d(1,2) works as long
as 3 does not divide n. There are three additional changes of variables that are
possible, but they are equivalent to the three already mentioned. This method,
therefore, handles any n X n board where n is not divisible by 30.

Open Questions

There are several directions for further study. Since our proof for the torus only rarely
makes use of both the top to bottom and the left to right identifications, the most
obvious question is to ask which rectangular boards have tours on a cylinder. In
addition, there are always projective planes and Klein bottles on which to put
chessboards. Finally, the algebraic approach could be applied to rectangular boards.
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Appendix

We now return to our discussion of Case 3 for square boards where n is a multiple of
15. In order to better understand our solution for the general 15k X 15k board, it is
worth looking at the 15 X 15 board in some detail. Let us begin with the move (2,1)
as a stroll. After 14 moves we make a shift using (1, —2). All goes well in this fashion
until exactly 1/5 of the squares have been visited and we are unable to use our shift at
square 45, as we see in Ficure 15.

What we notice, however, is that the 45 squares that have already been visited form
a perfectly arranged lattice on the board. Furthermore, from any of these squares, any
of the knight moves a, b, ¢, d—see Ficure 3—takes you to another of these squares;
whereas, any of the knight moves «, 8,7y, 8 takes you to a previously unvisited
square. Now, it is clear what to do: use move « as a stroll and use move d as a shift
(every 15 moves) until you reach 45, then use, say vy, once before resuming the
strolling and shifting with a and d, using y at 45, 90, 135, 180, and 225.

Since it is far less confusing if one uses colored pens when doing this by hand—red
for squares 1-45, green for 46—90, and so on—we call a move such as y a color
change. In this way, vy acts as a translation of a lattice of one color to an identical
lattice of another color. The five disjoint, but identical, lattices comprise the board.

This strategy certainly allows a knight to visit every square on a 15k X 15k board,
but does not always produce a closed tour. In fact, using a, d, and y in this same way
on a 30 X 30 board leaves an exhausted knight stranded after 900 moves in the 16th
row and 16th column. In order to find a closed tour we use a little algebra.
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FIGURE 15
Start of a 15 X 15 tour

Let us examine the case n = 15 more closely. We consider three variables, s, ¢, and
w, representing the stroll, the shift, and the color change, respectively. In a tour of a
15 X 15 board, we stroll for 14 moves and then shift, and repeat for a total of 3 strolls
and 2 shifts for each of 5 colors—that is, we repeat the sequence 3(14s) + 2t + o five
times, once for each color, and end up back where we started. Substituting a, d, and
y for s, t, and w, and multiplying by 5, we get 15(145s) + 10t + 5w = 210-(2,1) + 10
(1, =2) +5-(=2,1) = (420, 195) = (0, 0) (mod 15) which explains precisely why this
pattern returns us to the starting point. (A similar computation for the case n =30
also shows why the knight ends up stuck in the 16th row and 16th column.)

Let us now turn to the general case n = 15k. It is necessary to allow the stroll and
shift to vary from color to color, and to use different color changes as well. We thus
have fifteen variables s, t;, and w,, for i =1,...,5. Since we stroll for 15k — 1 moves
and then shift, and repeat for a total of 3k strolls and 3k — 1 shifts for each of 5
colors, the result of all the moves is given by

5 5
Y 3k(15k — 1)s,+ (3k — 1)t,+ ;= Y (3k — 1)¢, — 3ks; + ®, (mod 15k).

i=1 i=1
Thus, we are looking to solve the following congruence
(#%) (Bk—=1)(t,+ = +t5) —=3k(sy+ =+ +s5) + (w; + -+ +w5) =0 (mod 15k),

where s;,t,€{a,b,c,d} and o, €{a, B,y, 6} for each i. Moreover, we obviously
require that s; # +t,; for any i.

One further restriction applies to the color changes, since not every sequence of 5
colors changes will cycle you through all 5 colors. It is easy to find appropriate
sequences by constructing a directed graph with 5 vertices, one for each color, and
joining each ordered pair of vertices with an arc labeled with the color change «, B,
v, or 8 which takes you between the corresponding colors. We can thus see that there
are 24 allowable sequences. Since we are only concerned with the arithmetic at

present, these can be grouped into the following 8 classes where, in each case, we give
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FIGURE 16
Knight’s tour of a 15 X 15 board

the total effect of the five moves:
@B%=(5,0) a8 =(0,-5) PBy%:=(-50) aB2=/(0,5)
a’®=(10,-5) B°=(5,10) y?=(-10,5)  8°=(-5,-10)
We are now ready to present a solution of the Knight's Tour Problem for a

15k X 15k chessboard! In fact, the following moves provide a solution that works for
all 15k X 15k boards.

s;=a=(2,1) Hh=b=(-12) w;=a=(2,-1)
so=c=(—-2,-1) t,=d=(1,-2) w,=p=(1,2)
ss=d=(1,-2) ty=a=(21) wy=p=(L2)
sa=c=(—2,-1) t,=d=(1,-2) wo,=a=(2,-1)
ss=d=(1,—-2) ts=a=(2,1) ws;=8=(—-1,-2)
In order to see that this does yield a knight’s tour, note that
§y+tsg+ s34+, +s5=1(0,—-5)
b+ttt +t,+t5=1(5,0)
w, + 0, + 0y + o, + ws=(5,0)
so that congruence (#*) becomes
(3k—=1)-(5,0) = 3k-(0, —5) + (5,0) = (15k, 15k) =(0,0) (mod 15k)

which shows that our wandering knight does indeed return to the original square. You
might notice that the key was to make the sum of the five shifts and the sum of the
five color changes equal; thus, other solutions are possible. Ficure 15 shows the tour
produced by this particular solution for a 15 X 15 board. We encourage you to grab
five colored pens, a 30 X 30 grid, and have at it!
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Thales Meets Poincaré

DAVID E. DOBBS

University of Tennessee
Knoxville, TN 37996-1300

1. Introduction

According to [2, Theorem 39, p. 100], Euclidean geometry and hyperbolic (Bolyai-
Lobachevskian) geometry are the only types of absolute (also known as “neutral”)
plane geometry. These geometries are distinguished by the number of lines that pass
through a given point and are parallel to a given line. This number may be 1 (the
Euclidean case) or greater than 1 (the hyperbolic case): see axioms E and BL in [2, p.
197] or postulates (I) and (ID) in [3, p. 317]. Euclidean and hyperbolic geometry may
also be distinguished by considering the sum of the (radian) measures of the (interior)
angles in any triangle. Indeed, in Euclidean geometry, this sum is 7, while in
hyperbolic geometry, this sum is less than 7 (and may vary from triangle to triangle):
see [2, Theorem 2, p. 264 and Theorem 2, p. 278], [3, p. 118], [4, Theorems 10.1 and
10.3]. The main purpose of this paper is to see whether these two geometries may also
be distinguished by Thales” Theorem [2, Theorem 13, p. 269], a classical result on
triangles in Euclidean geometry whose proof depends on the behavior of parallel lines
and similar triangles in the Euclidean setting.

To study the possible validity of Thales” Theorem in hyperbolic geometry, we shall
work inside the Poincaré half-plane model, whose salient features are reviewed in
Section 2. There is no loss of generality in using this model, as hyperbolic geometry is
“categorical” [2, Proposition 7, p. 345], in the sense that all its models are isomorphic.
One benefit of using the Poincaré model is that the question of a possible “hyperbolic
Thales” Theorem” comes down to asking whether two specific numbers are equal; the
calculations in the Example in Section 2 give a negative answer. This accomplishes our
main purpose: Thales’ Theorem does distinguish Euclidean geometry from hyperbolic
geometry.

But we can say more. In Section 3, continuing to work in the Poincaré model, we
further analyze the two numbers that need to be calculated and compared in testing
for a “hyperbolic Thales” Theorem.” By subjecting the triangular data to a limiting
process that is designed to, so to speak, minimize the difference between the
hyperbolic and Euclidean metrics, we show (see the Theorem in Section 3) that the
ratio of the two numbers in question has limit 1. Thus, although Thales’ Theorem is
false in hyperbolic geometry, we can say that it holds “in the limit,” for a suitable
Euclidean-seeking limit process.

We hope that this work finds use as enrichment material in model-oriented courses
on absolute geometry. However, the technical details in Section 3 depend on a more
central part of the curriculum, namely real-analytic functions, as studied in advanced
calculus. The material being reinforced includes the Binomial Theorem for power
series, the calculations involved in multiplying, dividing, or composing functions
defined by power series, and the Maclaurin series for In(1 + x). A suitable reference
for this material is [1].


http://www.jstor.org/page/info/about/policies/terms.jsp

186 MATHEMATICS MAGAZINE

2. Poincaré’s Half-Plane Violates Thales’ Theorem

The form of Thales’ Theorem that we focus on is the consequence identified in [2,
Theorem 14, p. 271] and illustrated in Ficure 1: If A ABC is a triangle, with D an
interior point of the segment AB and E an interior point of AC such that the lines
DE and BC are parallel, then d(A, B)/d(A, D)=d(B,C)/d(D, E). (As usual,
d(P, Q) denotes the distance between points P and Q.) In fact, we focus further on
the special case in which D and E are the midpoints of AB and AC, respectively (in
which case, DE and BC are automatically parallel). Thus, for our purposes, Thales’
Theorem is the statement that if D and E are the midpoints of AB and AC,
respectively, in AABC, then d(D, E)/d(B,C)=1/2, or equivalently, d(B,C)=
2d(D, E).

B C
FIGURE 1

Thales” Theorem: If DE/ /BC, then d(A.B) _ d(B.C)

d(A,D) d(D,E)

In order to interpret the statement of Thales” Theorem in hyperbolic geometry, it is
convenient to review the following four features of the Poincaré half-plane model for

hyperbolic geometry.

1. Points. The “points” in the model are the points of the Euclidean upper half-plane,
equipped with Cartesian coordinates in the usual way.

2. Lines. The “lines” in the model arise from the “geodesic segments,” which are two
types: (a) bowed geodesics, arcs of Euclidean semicircles that are centered on the
x-axis; and (b) straight geodesics, segments of Euclidean lines that are perpendicu-
lar to the x-axis [4, Theorem 4.4].

3. Distance. The hyperbolic distance along a curve T is given by the integral
V(dx)” + (dy)”
f r Yy

distance is termed hyperbolic length. In particular (cf. [4, Proposition 4.1]), if g is
a circle with center K on the x-axis and P and Q are points of g such that the
radii KP and KQ make angles a and B, respectively, with the positive x-axis,

where 0 < a < B <, then the hyperbolic length from P to Q, measured neces-
M. Similarly [4, Proposition 4.3], if
csc a — cot

. If T is a geodesic segment as in (2), then hyperbolic

sarily along a bowed geodesic, is In
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1 <k, <k, then the hyperbolic length from (0, k,) to (0, k,), measured necessar-
ily along a straight geodesic, is lnk—2 [4, pp. 64-65].
1

4. Angles. “Angles” in the model may have curvilinear sides. The (hyperbolic)
measure of an angle is the same as its Euclidean measure, namely the usual
measure of the angle formed by the two tangent lines to the sides of the angle at
its vertex [4, pp. 70-71].

We are ready to test the validity of a “hyperbolic Thales’ Theorem.” The triangular
data are summarized in Ficure 2, and the analysis in the Example below proceeds
using the above features (1)-(4). These methods will be needed again for the more
general analysis in Section 3. In interpreting the “lines” in Ficure 2, view AB, AD and
DB as straight geodesics (as they appear), but view all the other segments as bowed
geodesics.

A0, ¢?)
E
D(0, ¢)
c,v2)
B(0,1)
FIGURE 2

Data analyzed in Example

Example. For the data in Ficure 2, with D and E the (hyperbolic) midpoints of AB
and AC, respectively, we find the hyperbolic lengths d(B,C)=In(y2 +1)=
0.881373587 and d(D, E) = 0.333182944. In particular, d(B,C) # 2d(D, E), and so
Thales” Theorem is not valid in hyperbolic geometry.

Proof. By the second fact in (3), d(D, B)=d(B, D) =1In % =1 and d(A, B)=
2

d(B, A)=lneT=2, and so D is indeed the (hyperbolic) midpoint of AB. We

proceed next to show that d(B,C) = In(V2 + 1). To do this using the first fact in (3),
consider C, the circle which is centered on the x-axis and passes through B and C.
This circle has a Cartesian equation of the form x*+y?+ Ax + u =0 for suitable
real numbers A and u. By substituting the coordinates of B and C, we can solve for
A= -2, u=—1Thus, C,isgivenby x> +y>*—2x —1=0,0or (x —1)* +y*=2.In
particular, the center of C, is K,(1,0). The radii K,C and K, B make angles -72—7 and

%, respectively, with the positive x-axis. By (3),

csc—37r cot——-gm
4 4 V2 —(—1
d(B,C)=In = = =In 1_(0 ) =In(v2 +1),

csc§ - coti

as asserted.
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Finding d(D, E) is more involved than finding d(B,C) because, in addition to
finding an equation of the circle C; which is centered on the x-axis and passes
through D and E, we must first find E! And, for this, we need to find an equation for
the circle C, which is centered on the x-axis and passes through A and C.
Fortunately, some of the process is as in the preceding paragraph, and so we may
leave many details to the reader.

As above, one can produce an equation for Cy: x2+y>+(e* —3)x—¢* =0, or
“approximately” x*+ y® + 51.59815003x — 54.59815003 = 0. The center of C, is

_ 4
Kz(—e—§+—3,0 , or approximately (—25.79907502,0). We now turn to finding the

coordinates of E, certainly the most tedious part of the analysis. For this, Ficure 3
(not drawn to scale) will be helpful.

FIGURE 3
Data used to find E in Example

Since E is the midpoint of AC, we have d(C, E) = d(E, A). Rewriting using (3)
and applying some trigonometric identities, we find

1—cosvy l—cosa] [l—cospB 1—cosvy
[ sin y ][ sin a ]_[ sin B ][ sin y ]

1—cosy  [(1—=cosB)(l—cosa)
siny (sin B)(sin @)

and so

The right-hand side of the preceding expression can be evaluated using the definition
of cosine and the Pythagorean identity sin = V1 —cos® 6 for 0 < 6 < 7. It follows
that
25.79907502
cos B= 96 83636379
25.79907502 + 1
€08 &= 796 83636379
1 —cosvy

~ 0.961347641, sin B8 = 0.275337454,
~ (0.998610513, sin a = 0.052697654.

=~ (.060839685, and so t := cos 7y satisfies

I=7  1-¢
Vi+t  1—¢2

Hence,

~ 0.060839685.
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Squaring both sides and rewriting, we obtain the linear “equation”
1.003701467¢t — 0.9962985327 = 0.

Thus, cosy=t = 0.992624366, whence y=cos ' ¢ = 0.121529573. (Readers using
other computational devices may find a value of ¢ which differs from ours after
“several” decimal places, with resulting “small” deviations from our subsequent
calculations.)

Now, the slope of the (Euclidean) line K,E is tany=0.122131437. Thus, the
point-slope form for the equation of K, E is “approximately” y = 0.122131437(x +
25.79907502). Solving this equation simultaneously with the above equation for C,,
we find the coordinates of E. Bearing in mind that the x-coordinate of E is positive,
the reader can resolve a sign ambiguity arising from the quadratic formula and thus
determine that E is approximately (0.839353580, 3.25338956).

Now that we have the coordinates of E, we can find that an equation for Cj is
x®+y®+ 6x —e® =0, where 6= —4.646435132. Thus, the center of C; is approxi-
mately K,(2.323217566,0). By analyzing the analogue of Ficure 3 for C; and
reasoning as above, the reader can verify, using (3), that

1.315465894 + 0.854663980
1.099102020 + 0.456097851

d(D,E)=In =~ In(1.395402555) ~ 0.333182944.

All the assertions have now been verified. This completes the proof.

It is tempting to seek a facile explanation for the discrepancy between 2d(D, E) =
0.666365888 and d(B, C) = 0.881373587 in the above Example. The answer does not
lie exactly in analyzing only the y-coordinates. In fact, the arithmetic mean of the
y-coordinates of D and E (resp., of B and C) is y, = 2.985835694 (resp., y, =
1.207106781). Heuristic arguments using (3) might lead one to suspect the relevance
of 1/ = 0.404277698 or In y, ~ 5.81151016, but neither is “approximately”

1/y, ny,
d(D,E)
d(B,C)
than try further to “explain” the Example, we turn next to examining Thales” Theorem
within a part of the Poincaré half-plane model in which the bowed geodesics look
“more Euclidean” or “less bowed” than in the above Example.

=~ (0.378026922. (Geometric means fare no better in such heuristics.) Rather

3. Thales’ Theorem Pushes Poincaré’s Half-Plane to the Limit

The Example in Section 2 showed that Thales’ Theorem is not valid in hyperbolic
geometry. Nevertheless, the Theorem in this section will establish that when such an
example is subjected to a suitable limiting process, then a hyperbolic Thales’ Theorem
becomes valid “in the limit.” To make matters precise, let’s consider the data in
Ficure 4. Here, 8 >0 and &> 1. During the limit process, 8 = 0" and ¢ —1". For

simplicity, we assume early in the analysis that 8=Ve*—1 (equivalently,

e=V1+062).

The above expressions for 8 and & suggest (correctly) that the power series form of
the Binomial Theorem will be useful. Moreover, we shall need some results from
advanced calculus stating that polynomial-like calculations are valid on the interior of
intervals of convergence for functions which (as our functions always will be) are
defined by power series with positive radii of convergence. Specifically, we assume
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A0, £2)

D(0, &)

B(0.1) Cc(8,1)

FIGURE 4
Data analyzed in Theorem

familiarity with a corollary of Mertens’ Theorem [1, Theorem 8.46, p. 204], which
permits taking products of analytic functions by using Cauchy multiplication
[1, Theorem 9.24, p. 237]; as well as the computational ways to carry out composition
[1, Theorem 9.25, p. 238] and reciprocation/division [1, Theorem 9.26, p. 239] for
analytic functions.

With our context and prerequisites in place, we can now proceed to our main
result.

THEOREM. Consider the data in Ficure 4, with §>0 and &= 4V 1+62>1, and
with D and E the (hyperbolic) midpoints of AB and AC, respectively. Then, as
analytic functions of 8, the hyperbolic lengths

d(B,C)=8+08%— %63 + -+ (higher degree terms)

and d(D,E) = 26+08%+ .

. . d(D,E) 1
In particular, limg _, o+ AB.C) 2

Proof. Insofar as possible, we argue as in the earlier Example, omitting analogous
details. In particular, C,, C,, and C; denote the bowed geodesics through B and C,
A and C, and D and E, respectively; and K, denotes the center of C; (i =1,2,3).

8
Notice that C, has Cartesian equation x® — 8x +y® — 1 = 0 and center K1(§ , O). In

particular, the maximum (Euclidean) height on C, above its “equilibrium” y-value of
2
lis|/1+ ST — 1, which tends to 0 as § = 0. In fact, one can show by I'Hopital’s

32
\ll'l‘T -1

Rule that more is true, namely lim _, j+ —————— = 0. Thus, the “line” C, looks

increasingly “flatter,” or “more Euclidean,” as 6 — 0*. We will eventually be able to
show the same for C,.
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Using fact (3) from Section 2 and simplifying, we find that
V4+52_(_3)

d(B,C) = 2 2 1/4+62+8
| Va+82 8 \/4+62 8
2 2

Le L[y _n(sty ., |8
21 4 8\ 4 2

The preceding application of the Binomial Theorem is valid if l e ‘ <1 and thus holds

for all sufficiently small 8> 0. The same proviso holds without explicit mention for all
the subsequent machinations. PO

The denominator in the last-displayed fraction is 1~ 5 + —= = y55 + . We
need to find its reciprocal, and we will need to find the reciprocal of many such series
in the work below. One familiar way to proceed is to solve recursively for the
coefficients when the reciprocal is expressed as a power series. For our purposes, it
may be faster to use a less familiar “long division” process. We carry out one
calculation in detail and then leave all similar calculations to the reader.

2 8 128
5 &2 &*
I=g*tg 1+
I
2 8 128
5 ot &
2 8 128
5 8> 8 )
§_T+E +06%+
8 _ &
8 16 128
82 63 84 -
T 16 +6_4+
84
128
Thus,
5 6?2 5*
d(B,C)=In 1+8[1+§+?—m+...
82 8% 8°

ln(l+A) with A=6+ — ?_TQ—S--F
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Using the Maclaurin series for In(1 + x) and then simplifying via Cauchy multiplica-
tion, we find

A A3
d(B,C)=A— ?'F? — e

B 52 53 _(82+83+“')+83+“‘
- 3

8+ 5+ g+ 3

. 5
=86+062— og T oA asserted.

4
The above work did not need the condition &= V1 + 82, but we will use this
hypothesis from now on. Its first contribution is a simple form for an equation for C,,

namely x*+y® — ¢* =0, whence C, has center K,(0,0) and radius &®=V1+ §2.
We turn to finding the coordinates of E, using Ficure 3 of the Example. In the

T
present context, cos @ = —, sina= —;, and 8= 5 It follows, as in the Example,
e e
that

w=v, where v:= VY V1482 —§.

sin y

As 0 < y< g, siny=11—cos®y, and so y/1 —cosy /y1+cosy=v. As in the
1— 2

Example, squaring both sides leads easily to cos y = 1+—112, and then it follows from

v

2
the Pythagorean identity that siny= 1 d 5. Hence, the coordinates of E are

v
o[ 1—v? 2e%
e , )
1+2v2) 1+02
With the coordinates for E in hand, the reader can now check that an equation for
C,is 2% +y? + Fx — &2 =0, where

_ (=) +?)

- <o0.

F

1—-v
Hence, the center of C; is K;| — E’O , and the radius of Cj is

Vde? + F?

R:: 2

Notice that the maximum (Euclidean) height on C; is R. To show that the portion
of C, between D and E becomes “flatter” or “more Euclidean” during the limit
process, just as was the case for C,, it suffices to prove that

2
lim max{R—e¢,R— 28V2 =
5-07 1+V
In fact,
R— 2321/2
R—¢ 1+v



http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 70, NO. 3, JUNE 1997 193

This may be easily shown using the following expansions, established below:

3, g , 8

R—1+'8—8 + ey €—l+—4 + e & —1+—2 + .-
5 5° , 52

Ilv—l—§+?+"‘,’ 1/—1—5'1"7‘"‘“‘.

For this reason, the present situation was described in the Introduction as a
“Euclidean-seeking limit process,” as C, and Cj are approaching in appearance the
Euclidean segments BC and DE in Ficure 1.

Before using the above information to find d(D, E), we need to show that E is to
the right of K, as such information is needed in determining the quadrants (and thus
the sign of the trigonometric functions) of the angles involved in applying (3). Thus,
we proceed to show that (for all sufficiently small 6> 0) the x-coordinate of E is
greater than the x-coordinate of Kj; that is,

&2(1—v?) S (e2-1)(1+v?)
1+ v? 2(1—v?) ’

or, equivalently,

(1—:/2)2 g2—1
> , or

1-V1+682+6 2> V1i+62 -1

1+v° 2¢* 1+V1+62 -5 oV1+82
2 4 6
Since the Binomial Theorem gives V1 + 8% =1 + % —%+%+ -+, we have
52 84 36 2
2 — —_—— — coe
1-Vi+e*+s| | "3 F "1
1+V1+8% -6 s, 08 8t 8t
2 5+2 8+16+
5 68°  &° . 82 8t 5
_(—2__?+E+05 +"')=T—?+a5+
Similarly,
62 5* 86
i-8°-1_ 7 -® I 8 3.,
2V1 + 82 82 8t 8° 4 16
21+7—?+E+"'

54
1 16
cee = 84(E + ) >0, since the continuity of analytic functions ensures that

limg _, 0+(1—16 + )= 1—]6 > 0. This completes the verification that E is to the right

of K.

For all sufficiently small 8> 0, 9 — 20 1 5 80 _ 3 su e
or all sutticiently sma 4 S 1 16 , that is
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The above information and (3) show that d(D, E) is the natural logarithm of

;

E +82(1_—1}2
l—i 1— 2 1+ v?
2R R
z 2e%w
R (1+ )R

|

2ev
1+ 2

il

_ 262(1—v?)
(QR-F)(1+v%) |

We next proceed to express the key ingredients in the preceding formula as analytic

functions of 8.

First,

2 4 6
v=yV1+8% — =\/1—5+%—%+%+--~
_1+_1_, _8+8_2_5_4+6_6+... _l _3+8_2_6_4+6_6+... 2+...
a 2 2 8 16 8 2 8 16
—l_§+6_2.+....
B 2 8 ’

2 4 6 2 4
thlﬁlsV2=1—8+%—%+f—6+-~~.Similarly,32=V1+82=1+%—%+
%+-~,andso

e
&= 2~ 8 716
_l 16_2._8_4.4_6_6._’_... __]_- 6_2_8_4.+5_6+.. 2+
=ltgle "5 t16 sl2 85116
6?2 3
=l+7—§5 + e
Next,
_6_2+6_4_6_6+... 2_3+5_2_8_4+6_6+...
P (1—82)(1+V2) _ 2 8 16 2 8 16
- 1-v? - 3_5_2 5_4_5_6+...
2 8 16
3 5
—82+%—%+056+---
_ 5 .
B
T2 8 16
and so F2=82+08°+ ---. Finally,
R_V46‘2+F2
o 2
52 8* 56 2 6
\/4(1+7_?+E+"')+(8 +08°+ )

2
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\/4+352—%4+%6+~- 3 57 8¢
= 5 =\/1+Z‘32_?+E+'
=1+%(%52—%4+f—g+ --)—é(%sz %4+f—2+- )d
+1—16(%62—%4+f—g+---)3+--
=1+%82—%54+%86+~-.

Substituting the above expressions, we have that d(D, E) is the natural logarithm of

2(1+%2—%64+--~)(1—§+%2+~-)
sor BB 2
2 4 6 2 4 6
e T R T T -]
(2+6+%82—é—184+---)(2—8+%2—%4+?—2+---)
1+%82+---
= 2 3 4
=1+g+%2+
Hence,
s 8 (§+%2+ )2 o
d(D,E)=(§+§+-~)— 5 +oe =g 087+
as asserted. Therefore,
L d(D.E) _ . §+082+-~ . §+062+-~ 1
s—0+ d(B,C) 50+ 8+062—g—43+”' 550" 8_3_;4__” 2°

to complete the proof.
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"Persian" Recursion

ANNE M. BURNS
Long Island University
C.W. Post Campus
Brookville, NY 11548

In this note we present a very simple recursive procedure that produces a variety of
attractive patterns resembling Persian rugs. Recursion, by its very nature, can lead to
surprisingly complicated and self-similar patterns. The idea behind the “Persian”
recursion is to start with a large square, subdivide into four equal squares, and
continue the process until we cannot go any further.

We begin with a 2" + 1 by 2" + 1 matrix of cells. Our objective is to “color” each
cell. We shall do this by assigning it a number from 0 to m — 1, where m is the
number of colors available. The values n=8 and m =16 work well on most
computers.

The first step is to “color” the outermost cells arbitrarily to produce a “bordered
square.” The simplest way to do this is to color them all the same color. Then the
following scheme is applied recursively: (a) Use the four corner cells and any
convenient function of four variables to determine a new color. (b) Assign this new
color to all interior cells in the middle row and middle column. (c) Apply the same
procedure to each of the four new “bordered squares.” The process terminates when
all cells have been “colored.”

A simple function of four variables for determining the next color is adding a
predefined constant a to the sum of the four corner colors and reducing the result
modulo m:

f(cy,cq.¢5,¢4) = (c) + ¢y +cy+cy+a)modm (1)

It is instructive to trace through a few stages by hand to see how the colors are
generated. Ficure 1 shows how the colors are assigned using (1) with m =16, n =3,
and a = 0, and initializing the border to color 1.

The simple formula (1) produces an amazing variety of patterns. Ficure 2 illustrates
(1) with m =16, n =8, a = 0 and the border color 1.

A simple variation on (1) is adding a to the truncated average of the four corner
colors and reducing the result modulo m:

f(c),cq,c5,¢4) = (trunc((c, + ¢y +c5 +¢,) /4) + a) mod m (2)

The appendix contains a simple Basic program based on (2).

It is remarkable, too, that the same number patterns with different color assign-
ments will appear dissimilar, as different color assignments emphasize different
structures hiding in the number patterns. In Ficure 3 we used the color function (2)
with m =16,n = 8, a = 2, a border color of 14 and two different palettes. In color the
differences are even more striking. As is often the case with recursion, if the pracess is
carried out for large values of n we observe that the patterns repeat on different
scales.

Even more variety can be obtained by experimenting with other functions that
determine the new color from the four corner colors. Quadratic functions, cubic

196
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1 1 1 1 1 1 1 1 1
1 | 10 7| 13 4 | 13 7 | 10 1
1 4 7 rd 4q 7 7 rd 1
1| 13 7 3 4q 3 7 | 13 1
1 4 4 P 4 4 4 4 1
1 | 13 7 3 4 3 7 | 13 1
1 7 4 7 4 7 7 7 1
1 | 10 7z | 13 4 | 13 7 | 10 1
1 1 1 1 1 1 1 1 1
FIGURE 1

M =16, n = 3, border color = 1

FIGURE 2
m=16,n=8,a =0, border color =1
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functions and combinations of sine and cosine functions are just a few examples.
Another way to achieve variety is to color the individual cells on the border in a
symmetric pattern, such as dark to light from the beginning of the edge to the center,
then light to dark from the center to the end of the edge. For a student project we
might investigate making patterns from other figures such as triangles or hexagons.

There are many other recursive and iterative methods for coloring a grid. The idea
of basing the color of a cell on the colors of its nearest neighbors is explored in depth
in [2]. Many other ideas for coloring grids can be found in the chapter “Wallpaper for
the Mind” in [1].

Appendix

The following Basic program is based on (2) with @ = 3. A recursive function draws
two lines dividing the current square into four new squares and then calls itself four
times, once for each of the new squares.

DECLARE FUNCTION ColorGrid! (left! right!, top!, bottom!)

DECLARE FUNCTION f! (left!, right!, top!, bottom!)

INPUT "Enter the border color (1 through 15) ", bordercolor
SCREEN 12

CLS

left = 0

right = 256

top = 0

bottom = 256

LINE (left, top)-(right, top), bordercolor

LINE (left, bottom)-(right, bottom), bordercolor

LINE (left, top)-(left, bottom), bo;dercolor

LINE (right, top)- (right, bottom), bordercolor

k = ColorGrid(left, right, top, bottom)

END

FUNCTION ColorGrid (left, right, top, bottom)

IF left < right - 1 THEN
c = f(left, right, top, bottom)
middlecol = (left + right) / 2
middlerow = (top + bottom) / 2
LINE (left + 1, middlerow)-(right - 1, middlerow), c
LINE (middlecol, top +1)- (middlecol, bottom - 1), ¢
ColorGrid = ColorGrid(left, middlecol, top, middlerow)
ColorGrid = ColorGrid(middlecol, right, top, middlerow)
ColorGrid = ColorGrid(left, middlecol, middlerow, bottom)
ColorGrid = ColorGrid(middlecol, right, middlerow, bottom)

END IF

END FUNCTION

FUNCTION f (left, right, top, bottom)

p = POINT(left, top)+POINT(right, top)+POINT (left,bottom)

+ POINT (right,bottom)
f=(p/ 4 + 3) MOD 16
END FUNCTION
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Another Proof of Pick’s Area Theorem

CHRISTIAN BLATTER
Department of Mathematics
ETH Ziirich

Switzerland

Let P be a simple lattice polygon, i.e., a polygonal Jordan domain in the plane whose
vertices have integer coordinates. Pick’s theorem says that the area u(P) is given by

w(P)=1i+ % -1,
where i and b denote the number of lattice points in the interior and on the boundary
of P, respectively. Several proofs of this theorem can be found in the literature (see
[1] for a recent list of references); most of them use a dissection argument combined
with an analysis of certain triangles. Here I offer a proof of a more conceptual nature;
it has the form of a Gedankenexperiment (thought-experiment).

Assume that at time 0 a unit of heat is concentrated at each lattice point. This heat
will be distributed over the whole plane by heat conduction, and at time « it is equally
distributed on the plane with density 1. In particular, the amount of heat contained in
P will be u(P). Where does this amount of heat come from? Consider an edge e of P
with midpoint m. The lattice points not on e come in pairs lying symmetrically with
respect to m, and two such lattice points will send the same amount of heat across e,
but in opposite directions. This implies that the total heat flux across e is 0, so that the
final amount of heat within P comes from the interior lattice points and from the
lattice points lying on the boundary dP. To account for the latter, orient JP so that
the interior is to the left of dP. A lattice point on dP which is not a vertex sends half
its heat into the interior. The amount of heat going from a vertex into the interior is
again a half, minus the turning angle of JP at that vertex, measured in units of 2.
Since the sum of all turning angles for a simple polygon is known to be one full turn,
we arrive at the stated formula.

REFERENCE
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A New Proof of the Formula for the Number
of 3 X 3 Magic Squares

MIKLOS BONA

Massachusetts Institute of Technology
Cambridge, MA 02139

Introduction For our purposes, a magic square is a square matrix with nonnegative
integer entries in which all row sums and column sums are equal. (We note that other
notions of magic squares exist. For example, one might require that the diagonal sums
be the same, too, or one might forbid repetitions of elements in any line.) Let H,(r)
denote the number of n X n magic squares of line sum r. It has long been known (see

[1] and [4)) that
Hdr):(ri4)+(r23)+(rzz)' (1)

However, we haven’t seen any proof that actually showed why the result is the sum
of three binomial coefficients. This has suggested that a more natural proof could be
found. In this paper we are going to give such a proof. In fact, we divide the 3 X 3
magic squares into three different classes, each of which will provide one of the
binomial coefficients in (1) in a natural way.

Our proof Take any magic square of line sum r and side length 3. It is clear that
the four elements shown in the figure determine all the rest of the square.

a | d

Cc

Indeed, the next figure shows our only possible choice for each remaining entry. Thus
we need only compute the number of ways we can choose @, b, ¢ and d so that we
indeed have that one choice, i.e., so that all the entries of the magic square are
nonnegative.

a d r—a—d
r+c—
b a+d—c
(a+d+Db)

b+d—-c|r—-b—-d c
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The preceding figure shows that all the entries of our matrix will be nonnegative if and
only if the following inequalities hold:

at+td<r (2)
b+d<r (3)
c<a+d (4)
c<b+d (5)
a+d+b—-c<r. (6)

To prove (1), we will consider three different cases, according to the position of the
smallest element on the main diagonal. In each case, at least three of the five
conditions above will become redundant, and we will only need to deal with the
remaining one or two.

1. Suppose 0 <a <b and 0 <a < c. In this case conditions (2), (5), and (6) are clearly
redundant, because they are implied by (3) and (4). The crucial observation is that
in all the three cases we can collect all our conditions into one chain of inequalities.
In this case, we do it as follows:

a<2a+d—-c<a+b+d—-c<b+d<r. (7)

Indeed, the first inequality is equivalent to (4), the second one is equivalent to our
assumption that a <b, the third one is equivalent to our assumption that a <c,
and the last one is equivalent to (3).

Moreover, note that once we know the terms of this chain G.e., a,2a +d —c,
a+b+d—c b+d), then we know a, b, ¢, and d, too, so we have determined
the magic square. Thus we need only count how many ways there are to choose
these four terms. Inequality (7) shows that these terms are nondecreasing, there-
fore the number of ways to choose them is simply the number of 4-combinations of

r + 1 elements with repetitions allowed, which is (TZ‘I). (Recall that 0 is allowed
to be an entry.)

2. Now suppose a >b and ¢ > b. Then (3), (5), and (6) are redundant. Consider the
chain of inequalities

b<2b+d—-c<a+b+d—-c—-1<a+d-1<r-—1. (8)

We can use the argument of the previous case to prove that (8) is equivalent to (2),
(6), and our assumptions, as the roles of @ and b are completely symmetric. The
only change is that here we don’t count those magic squares in which a = b—this
explains the —1 in the last three terms. Thus here we have to choose 4 elements in

r+3)

nondecreasing order out of the set {0,1,+--, r —1}; this can be done in ( 4

ways.
3. Finally, suppose a>c¢ and b>c. Then (2), (3), (4), and (5) are redundant.
Condition (6) and our assumptions can be collected into the following chain:

c<b-1<b+d—-1<a+b+d-c—2<r—2. (9)

Here the first inequality is equivalent to our assumption ¢ <b, the second one says
that d is nonnegative, the third one is equivalent to our assumption ¢ <, and the
last one is equivalent to (6). The four terms of (9) determine, a, b, ¢, and d, and

. r+2 .
they can be chosen in J ) ways, which completes the proof.
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Thus the number of 3 X 3 magic squares of line sum r is indeed (rj;‘l) +(r;;3)

+(rt2 ) Furthermore, the three terms in this sum count the magic squares in which

4
the minimal element of the main diagonal first occurs in the first, second, or third
position.

For results on larger magic squares, see [6] or [4].

REFERENCES

1. H. Anand, V. C. Dumir and H. Gupta, A combinatorial distribution problem, Duke Math. J. 33 (1966),
757-769.

. M. Béna, There are a lot of magic squares, Studies in Applied Mathematics 94 (1995), 415-421.

. C. J. Henrich, Magic squares and linear algebra, Amer. Math. Monthly 98 (1991), 481-488.

4. P. A. MacMahon, Combinatorial Analysis, vols. 1-2, Cambridge Univ. Pr., Cambridge, UK, 1916
(reprinted by Chelsea, New York, NY, 1960).

. D. B. Shapiro, A replication property for magic squares, this MAGAZINE 65 (1992), 155~160.

. R. P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics 41, Birkhduser,
Boston, MA, 1983.

w N

> Ut

Bell’s Conjecture*

For math, the Oscar envelope
(Assured by Price and Waterhouse)
Would list a three-way tie, I'd hope:
Archimedes, Newton, Gauss.

fine
Archimedes” modern mind
(Narrowly he bounded pi),

Impelled to seek and swift to find,
Defined the Hellenistic high.

Newton’s fluxions formed the frame
That fit the Universal Law.

Even Leibniz spread his fame:

“We know the Lion by his claw.”

Many Magi graced the scene

But Gauss was greater than all since.

If Number Theory is the Queen,

Carl Friedrich is its freshest Prince.
D.C.

*E. T. Bell, Men of Mathematics, Simon and Schuster, New York, 1961.

—]J. D. MEMORY
THE UNIVERSITY OF NORTH CAROLINA
CHAPEL HILL, NC 27515
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4 4

Thus the number of 3 X 3 magic squares of line sum r is indeed (r+4) +( r+ 3)
). Furthermore, the three terms in this sum count the magic squares in which

+ r+2
4
the minimal element of the main diagonal first occurs in the first, second, or third
position.
For results on larger magic squares, see [6] or [4].
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Can One Load a Set of Dice So That the Sum
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North Dakota State University
Fargo, ND 58105

Introduction Suppose we have two ordinary six-faced dice, and § is the sum of the
numbers shown when the dice are rolled once. Then the random variable S can take
any of the eleven integer values from 2 to 12. Can one load the dice so that S is
uniformly distributed, ie., P(S=i)=1/11for i =2,3,...,12?

The answer is no, as can be shown by an elegant probabilistic argument using only
the simple inequality that x + 1/x > 2 for all x > 0. (See Problem 52 in [4, p. 130].)
Another (analytical) proof uses a polynomial factorization, as follows. Let p, and r; be
the probabilities of the number i appearing on the first and second dice, respectively,
for i=1,2,3,4,5,6. Suppose that the distribution of S is uniform. Then the probabil-
ity generating function of S (for an exposition on probability generating functions, see
[3, p. 177]) satisfies the following identity:

%(x2 +al 4 ) = (prx+poa® + o Hpex®)(rix Hrgx® 4 +rga®),
or, equivalently,
I+x+ - +x0= 11( prFtpgx+ - +p6x5)(r1 +roxt o +r6x5).
Now observe that the complex roots of the polynomial 1 +x+x%+ -+ +x'° are

symmetrically spaced on the unit circle in the complex plane, and that none is real.
Since

1
17 = Pr(S =2) =p,r; =Pr(S = 12) =pgre,

it follows that none of p,, pg, r;, and rg vanishes. Thus each factor on the right side
of (1) is actually a fifth-degree polynomial; this implies the contradiction that each
factor has at least one real root.

A generalization We now generalize the above problem to the case of n dice, each
m-faced with faces numbered from 1 to m. We will show that the answer to the
question posed in the title is negative.

More precisely, suppose we have n independent random variables X, X,,..., X,,
such that each X, takes values 1,2,..., m, with respective probabilities

Pr(X;=1) =py, Pr(X;=2) =py,....Pr(X;=m) =p,,.
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Let S=X, + X, + - +X,. Is it possible to choose the probabilities p;; such that
the distribution of S is uniform, i.e., such that

. 1 ,
qj=Pr(S=])=mfor]=n,n+l,...n7n?

If m is even and n > 1, one can show that the answer is negative by a factorization
argument similar to that in the introduction. However, we prove the following more
general result, using probabilistic arguments.

THEOREM. If n> 1, then for any choice of probabilities p;;, the distribution of S
satisfies the inequality

n—1
max g, —q;l = ——

n<i,j<nm n-m

The desired result follows immediately (otherwise, |q, — qjl =0 for all 4, j):
COROLLARY. If n> 1, there do not exist p;;’s such that S is uniformly distributed.

Proof of theorem. Let X1, Xy,..., X;, be independent random variables, such that

each X| takes values 1,2,..., m, with respectively “reversed” probabilities, as follows:
X 1 2 + m—=1 m
Pr ' pu Pim-p Pi2 Pa

Let $'=X{+X;+ - +X,, and ¢, =Pr(S'=i), i=n, n+1,...,nm. Note that
each g; is equal to some g;, and conversely. This implies that

max g, —q;l = max |q;—gjl.
n<i,j<nm n<i,j<nm

We can assume, without loss of generality, that g, <g,,,. To see why, note that for
any choice of integers 1 <a,, a,,...,a, <m,
Pr((X{, X5,..., X,) = (a,,4ay,...,4a,))
=Pr((X;, Xy,....X,)=(m+1—-a,m+1—a,,....m+1-a)).
It follows that for all i=n, n+1,...,nm,
q;=Pr(S'=i) =Pr(S=n(m+1) —i) =Gnom+1)—i-
In particular,
Gn = YGum A0 Gy, = G-
From this we conclude that at least one of the inequalities
G < qum a0d g, <G
must hold. Thus, if ¢, <g,,, fails, we may argue in terms of the variables X/, which
satisfy g, <¢,,,. In the following, we assume that g, <g,,,, and consider two cases.
Case 1: q, <1/n’*m.
Since X", q, = 1, it follows that

1 1
n<i,j<nm i nm—n+1 nm

Therefore,

max g, —q;l = max g,—q,
n<i, j<nm n<i<nm
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This establishes the desired inequality.
Case 2: q,> 1/n*m.
Since
g, =Pr(S=n) =pypo P,
Gun = Pr(S=nm) =p1,, oy = Pum> a0d G, <G>
it follows that each p;, and p,,, is positive. Therefore

Gn+m-1 = PI'(S =n+m-— ]_)

n
YPr(X,=1,X=1,....X_,=1,X,=m,X;;,;=1,...,X,=1)

>

i=1

n

= Z P11 Po1 " Pa-»1Pim Pi+n1 *"" Pl

i=1

le p2m an )

= cen —_— + —_— + cee + -

PuPa Pnl( Pu Por P

= qnn( plm p2m an/pn le pnl)l/n

(by the Arithmetic Mean-Geometric Mean Inequality)

= Gun/q,) "

Z nqn (Since qll S qnm) ‘

This establishes the desired inequality, and completes the proof.

Two comments A basic problem in the theory of polynomials is how to factor them.
If a reducible polynomial has integer coefficients, it is interesting to find factors with
integer coefficients. (See, e.g., Barbeau [1, p. 84]) In a similar vein, given a
polynomial with nonnegative coefficients it is interesting to find factors with nonnega-
tive coefficients. The probabilistic problem considered here throws some light on this
algebraic problem. Consider the polynomial 1+x+x*+ == +x"""" of degree
nm —n. All of its coefficients are nonnegative. If n>1 and m > 1, then it follows
from the Corollary above that it is impossible to factor the polynomial into n
polynomials, each of degree m — 1, such that each factor has nonnegative coefficients.
We remark, finally, that if one may choose the numbers to be imprinted on the
dice, then a uniform distribution for S is possible, as Barnard [2] demonstrates as
follows: Take two fair, six-faced dice. On one die, label the faces 1,2,3,4,5,6, as
usual. On the other die, print 0 on three faces and 6 on the other three. Then § is
uniformly distributed, taking the values 1 through 12, each with probability 1/12.
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Students Ask the Darnedest Things:
A Result in Elementary Group Theory

STEVE BENSON

University of New Hampshire
Durham, NH 03824

Introduction In most elementary group theory courses, students are introduced to
the Fundamental Theorem of Finite Abelian Groups (FT), which states that every
finite abelian group is isomorphic to exactly one direct product of cyclic groups of
prime power order. (These cyclic groups are called invariant factors.) As every cyclic
group of order k is isomorphic to Z,, the additive group of integers mod k, FT asserts
that every abelian group of order 12 is isomorphic either to Z, X Z; or to Z, X Z, X
Z,. (T'll use the common abbreviation Z, to denote Z/kZ, with apologies to my fellow
number theorists, who usually use this notation to denote the k-adic integers.)

A standard exercise is to determine whether a given abelian group G of order 12 is
isomorphic to Z, X Z; or Zy X Zy X Z; by computing the orders of the elements
of G. For instance, if G contains an element of order 12 (or 4, for that matter), it
must be isomorphic to the cyclic group Z, X Z, and if G has more than 1 element of
order 2, then it is isomorphic to Z, X Z, X Z,. Notice, however that every abelian
group of order 12 contains exactly two elements of order 3. An important concept
reinforced through such an exercise is that isomorphisms preserve order. Specifically,
if f+ G— G’ is a group isomorphism, then g and f(g) have the same order in their
respective groups. Thus if two finite groups G and G’ are isomorphic, they must have
identical order structure (the same number of elements of each order).

This article examines the converse question, posed by a student in a group theory
course:

Could two finite abelian groups have the same number of elements of each
order, but not be isomorphic?

The answer “no” seems to be a folk theorem (everyone knows it’s been proven, but
nobody can cite a reference). The more I thought about it, the less obvious the result
became. After all, both Z, X Z and Z, X Z, have 3 elements of order 2, yet they're
certainly not isomorphic. To satisfy my own curiosity (and to practice what I preach
when I tell my students that they don’t really know whether a conjecture is true until
they've either understood a proof or proved it themselves), I decided to work on the
problem. I succeeded in proving the expected result: if two finite abelian groups have
the same order structure, then they are isomorphic. The key idea—and the reason I
hope this article will interest the reader—is an algorithm that counts the elements of
any given order in a finite abelian group G, in terms of the invariant factors of G. I'll
illustrate the formula and proof with several examples and show what happens when
either hypothesis on G and G’ (finite, abelian) is violated. Finally, I'll derive a
“converse” to the formula mentioned above, making it possible to determine the
invariant factors of a group G given the order structure of G.

The order structure of finite abelian p-groups First, some preliminaries. As FT
shows, the first step in studying finite abelian groups is to investigate cyclic groups of
prime power order. A group G is called a p-group if |G|=p", for some positive
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integer n and prime p. As the direct product of cyclic p-groups is an abelian
p-group, FT also says that every finite abelian group is isomorphic to a direct product
of abelian p-groups for various primes p. Of course, if G is itself a cyclic group of
order p* for some prime p, then G is isomorphic to Z . Thus FT implies that every
finite abelian p-group of order p" is isomorphic to exactly one group of the form

k k 2 cee k n
L) XLy X o XL
where each k; is a non-negative integer. (Here Z], denotes the direct product

Zm X Zﬁl X o Zm

n times
when n > 0 and Z?, denotes the trivial group.) For short, we’ll say that G has p-factor
type ki, ky,...,k,>. For example, the Klein 4-group is isomorphic to Z% X Z and
has 2-factor type (2,0); the cyclic group of order 4 is isomorphic to Z3 X Z} and so
has 2-factor type €0, 1).

In order to derive a formula that counts the elements of order p’ in a finite abelian
p-group, it is natural to first investigate cyclic, then the direct product of cyclic,
p-groups. To understand the cyclic case, we consider an example. Let G = Z,;. The
elements of order 27in G are 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25,
and 26. The elements of order 9are 3=1:3,6=2-3,12=4-3,15=5:3,21 =73,
and 24 = 8-3, while the elements of order 3 are 9 =1-9 and 18 =2-9. That is, Z;
contains 18 elements of order 27, 6 elements of order 9, and 2 elements of order 3
(and of course 1 element of order 1).

We leave to the reader the task of confirming the following formula, which
generalizes the result of the previous example. For the sake of brevity, we introduce
the notation N(G;m) to denote the number of elements of order m in the group G.

LEMMA 1.

N(Z,;p') = o(p') ifi<m

where @ is the Euler o-function.
0 ifi>m, ¢ o

Now consider the group G =Z,, X Zg. By Lemma 1, Zy, and Zg both have
©(9) =6 elements of order 9. The order of an element (a,b) in G is the least
common multiple of the order of @ and the order of b. Thus, (a, b) has order 9 if and
only if one of a or b has order 9 and the other has order that divides 9, making the
task of counting the elements of order 9 in G slightly more complicated. Notice that
the order of (¢, b) in G is a divisor of 9 if and only if the orders of a and b are both
divisors of 9. But the number of elements in Z,; of an order which divides 9 is
N(Zy;;1) + N(Z 473 3) + N(Z 47;9) = 9. Similarly, we see that Zg,; also has 9 elements
having order which divides 9. Again for the sake of brevity, we introduce [G;m] to
denote the number of elements in G having order that divides m. The formula
IZ;.=O ¢(p/)=p’, along with Lemma 1, allows us to confirm our next preliminary
emma.

LEMMA 2.
7 1o |p Hism
[ P p ] pm 7f’l >m
Back to G = Zy; X Zy,. Since the order of (a, b) divides 9 if and only if the orders

of @ and b both divide 9, we see that [G;9] = [Z4;;9]-[Z,;9] = 81. An analogous
argument confirms our final lemma.
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LEMMA 3. If G|, G,,...,G, are finite groups, then [G, X Gy X -+ X G,;m] =
"H;L:l[cj; m].

Notice that if we are interested in computing N(G; p') it is very useful to know that
N(G, p) =I[G; p'1=[G; p'']. Fortunately, [G; p’] is not terribly difficult to com-
pute when G is an abelian p-group.

To this end, suppose G is an abelian p-group having p-factor type <k, k,,..., k).
Then the preliminary lemmas give us

[Gip] = T1[Z, 9] = T (2,597 = TT(p)" TT (»)".
j=1 j=1 j=1 j=i+1

When i = 1, we then have [G; p] = I, pkn=phithatth, et K= X7k, Then
when i > 1,

i | = kit 2k ttik i(k‘. +k'_ 5 +..‘+kn)
[Gip'] =p" piin i

2 kgt tik,,  i(K—ky—ky——k)

=p* p

— p(k1+2 kotetik;+i K—ik)—iky—=—ik;)

Applying the fact that N(G; p*) =[G; p'] = [G; p'~!] gives the promised formula for
N(G; p') when G is an abelian p-group.

THEOREM 1. Let p be prime. Suppose that G is an abelian group of order p", with
pfactor type (ki ky,...k,). Define K=Y 1k, s,=0, s, =K, and s,=iK+
Li21(j — Ok; when 2 <i <n. Then N(G; p') = p* —p*-1.

Examples Let’s use Theorem 1 to determine the order structure of several specific
p-groups. We leave to the reader the (optional, tedious) exercise of listing and
computing the order of the group elements in order to confirm the results.

Example A. Let G=17,XZ,. Then G is an abelian 2-group of order 8 having
2-factor type {1,1,0) (as G = Zy, X Zy; X Z3). Then k; =1=k,, k;=0,and K=1+
1+0=2,50s;,=2and s,=2K—k,; =4 —1=3=s,. Therefore our formula shows
that G has 2°' — 2 =4 — 1 =3 elements of order 2 and 2% — 21 =8 — 4 =4 ele-
ments of order 4. -

Example B. If G=2,XZy X Z, X Zg, then G is an abelian 2-group with 2-factor
type €3,0,1,0,0,0). Therefore, k, =3, ky=1, ky=k,=k;=ks=0, K=4, s, =4,
sy=2K—k, =5, s;=3K—2k, —k, =6, s, = 4K — 3k, — 2k, — ks =6, s, = 5K —
4k, — 3ky — 2ky —k, =6, and s =6K — 5k, — 4k, — 3k; — 2k, — ks = 6. We then
use the formula to compute N(G;2)=2%—-1=16—-1=15, N(G;4) =2 —2" =
32—16=16, N(G;8)=2%—2%2=64—32=232, N(G;16)=2% — 2% =64 — 64 =
0, N(G;32) =2%—2%=64 — 64 =0, and N(G;64) =2% — 2% =64 — 64 = 0.

Example C. Let G=Z3X Z3X Z4X Zy;. Then G is a finite abelian 3-group with
3-factor type ¢3,0, 1,0, 0,0). It is helpful to notice that the 3-factor type of this group
is identical to the 2-factor type of the group in the previous example, so Theorem 1
shows that the values for each k;, K, and s; are the same as in Example B. Hence,
our formulas are identical except that all powers of 2 are replaced with the corre-
sponding power of 3. Thus G has 80 elements of order 3, 162 elements of order 9,
and 486 elements of order 27.

Abelian groups of any (finite) order Having dealt with p-groups, let’s now
consider general finite abelian groups. Lagrange’s theorem implies that if A is a group
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with | Al not divisible by a prime p, then A has no elements of order p' for any
positive integer i. That is, N(A; p’) = 0. FT implies that if G is an abelian group of
order n =p"pg2 -+ pr, where the p; are distinct primes, then G is isomorphic to a
group of the form A, ><A py X 1w XA, , where each A, is an abelian p;- group of
order p™. Thus we assume, w1thout loss of generality, that G=A, XA, X -

The order of any element (g, g,,..., g,) in G is the least common multlple of tﬁe
orders of the g, in A,, each of which is a non- negative power of p;. Thus if
m=pliple - pkbr, then N(G m) is the number of ordered r-tuples (g1, g9,---, 8
in G with each g, of order p}, which is clearly IT/_, N( A, p; b1). (Note that it
therefore follows that two finite abelian groups have identical order structure if and
only if they have the same number of elements of each prime power order.) Theorem
1 tells us how to compute N(A, ; p/) for each i, given the p-factor type of each
A, . We have, therefore, a method for counting the number of elements of G having
order m. Instead of writing down a messy formula, we’ll illustrate the method with
two examples. The first example group is small enough to permit a determined reader
to confirm the results “by hand.” The second example, a group of order 5832, would
be hard to check without a computer.

Example D. Let G=2Z, X Z, X Z,. Then G =A, X A;, where A, =7,X 7, and
Agy=1Zy are the 2 and 3 “parts” of G, respectively. Therefore, by the above
discussion, N(G;27-3%) = N( Ay;29)-N( A3;3”). As in Example A, we know that
N(Ay ;1) =1, N(Ay;2) =3, and N(Ay;4) =4. Also, using the same method as in
Examples A—C, A; is a 3-group having 3-factor type €0, 1) (with s, =0, s, =1, and
5,=2), s0 N(Aj1)=1, N(Ay;3)=31—3%=2 and N(A;9) =3%—3%=6.
Hence N(G;1)=1-1=1, N(G;2)=3-1=3, N(G;3)=1-2=2, N(G;4) =4-1=4,
N(G;6)=3-2=6, N(G;9)=1:6=6, N(G;12)=4-2=8, N(G;18)=3-6=18,
and N(G;36) =4-6=24. (Notice that ¥, ., N(G;n)="72, the order of G. This
proves nothing about the veracity of our results, but it is certainly comforting to the
author.)

Example E. Now, Let G=Z,X I, XL X L3 X L3 X Zy;. Then G=Ay, XA,
where Ay, =Z,XZ, and A;=Z,XZ;XZyXZy, so N(G;12)=N(G;4-3) =
N(A,;4)-N(Aj;3). By Examples A and C, we know that N(A,;4) =4 and N(A;;3)
=80, so N(G;12) = 320. Similarly, N(A,;2) =3 and N(A;;9) =162, so N(G;6) =
3-80 =240, N(G;18) = 3-162 = 486, and N(G;36) = 4-162 = 648, for example.

The main theorem We can now prove our main theorem, confirming our original
proposition that two finite abelian groups are isomorphic if and only if they have
identical order structure.

THEOREM 2. If G and G’ are finite abelian groups, then G and G’ are isomorphic
if and only if N(G; p") = N(G'; p*) for all prime p and all non-negative integers i.

Proof. Clearly, if G is isomorphic to G’, we must have N(G; p') = N(G'; p*) for all
p and i. Conversely, suppose that N(G; p') = N(G'; p') for all p and i. If G is a
p-group, then the proof follows from the fact that the set of N(G;p‘) completely
determines the p-factor type of G. In a nutshell, the N(G;p') determine the s,
(defined in Theorem 1), which determine the k;, which determine the p-factor type.
The interested reader is encouraged to see Theorem 3 for the explicit formula.

Now suppose G is not a p-group. As in the paragraph preceding Examples D and
E, we have N(A,; p')=N(A);p’) for all p and i, where G is isomorphic to
IT, A, and G’ is 1somorph10 t I1 » A, (where, of course, all but finitely many A,
and A, are trivial). Then, by the result of the first paragraph of the proof, we see that
A, is 1som0rphlc to A, for all primes p, so G must be isomorphic to G'.
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Having shown that two finite abelian groups having identical order structure must
be isomorphic, we will now show that both of the adjectives “finite” and “abelian” are
necessary hypotheses for Theorem 2.

(Counter)Example F. Let G=2Z,XZyXZ, (the elementary abelian group of
order 27). Every element of G other than the identity (0, 0,0) has order 3. Let G’ be

1 a
the multiplicative group of matrices of the form [0 0 ¢ |, where a, b, and ¢ are
0 0 1
elements of the ring Z;. It’s easy to see that G’ is a nonabelian group so can’t
1 a b 1 3a 3ac—3b
be isomorphic to G. Notice, however, that [0 1 ¢| =0 1 3¢ =
0O 0 1 0o 0 1

1 0 0

(0 10 ), so every non-identity element of G’ has order 3. Thus G and G’ have the
0 0 1

same order structure. This shows that Theorem 2 fails when one of G or G’ is

nonabelian.

(Counter)Example G. We leave it to the reader to show that if G and G’ are as in
(Counter)Example F, then G X S; and G’ X S are both nonabelian groups of order
162 with identical order structure. However, G X S, is not isomorphic to G’ X Sj,
which shows that Theorem 2 cannot be generalized to include the case when both
groups are nonabelian.

(Counter)Example H. To see that Theorem 2 fails for infinite abelian groups, let
G=Zand G' =Z X Z. G and G’ both contain one element of order 1, and no other
elements of finite order. In addition, G and G’ both have countably many elements of
infinite order, so G and G’ have identical order structure, yet G is cyclic while G’ is
non-cyclic. Thus G and G’ are not isomorphic.

Extension A useful consequence of this work is the following “converse” of the
formula for N(G; p') derived in Theorem 1, which gives a formula for determining
the p-factor type of an abelian p-group (and therefore any finite abelian group) given
the number of elements of each order.

THEOREM 3. Suppose G is an abelian p-group, N(G; p?) is the number of elements
of order p' in G, and [G; p'l= §=0 N(G; p"). Then GEZ;‘)I X szkz X vee XZP,,k"
where

12
[Gsp]
[Gsp ]G p!]
[G;p"] .
logp('[c—;-m zfz =n
Proof. Recall that p* =[G; p’]. Thus s, = logp([G; p']). Referring to the definition
of the s;, one can show that s; —s;_;, = Xj_;k;, which implies
. 28, =81 — 8-, fl<i<n-—1
! Sn_'gn—l ifz=n,

log,,

) fl<i<n-—1

and the theorem follows immediately.
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Proof Without Words: Sums of Squares
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—I. A. SAKMAR

DEeprarRTMENT OF PHysics

UNIVERSITY OF SouTH FLORIDA
Tampa, FL 33620

On Groups of Order p?

ACHILLEAS SINEFAKOPOULOS

20 Efesou loakim Street
Athens 17236
GREECE

Many texts on abstract algebra contain the result that a group whose order is a square
of a prime must be abelian. The usual proofs make use of the class equation and occur
in a section often labeled optional or placed late in the book (see, e.g., [4, p. 79)].
Using the notation of [4], we shall combine well-known ideas to obtain a more
elementary proof. First, two preliminary results:

LEMMA 1. Let H and K be finite subgroups of a group G. Then
|H|-|K|

|HK|= HAK]

Proof. Let ]=HﬂK be a subgroup of K of index n=|K|/|HNK| Also, let
K=Jk, UJkyU -+ UJk, be a decomposition of K into disjoint right cosets of | in
K. It is clear that Hk, = Hk; if and only if Jk; = Jk;; that is, if and only if i =j. Since
HJ = H, these imply that HK is the disjoint union Hk U Hk, U -+ U Hk,,. Therefore
|HK|=|H|-n=|H||K|/|H N K|, as desired.

LEMMA 2. If G is a group of order p®, then every subgroup of G is normal.
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HJ = H, these imply that HK is the disjoint union Hk U Hk, U -+ U Hk,,. Therefore
|HK|=|H|-n=|H||K|/|H N K|, as desired.

LEMMA 2. If G is a group of order p®, then every subgroup of G is normal.



http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 70, NO. 3, JUNE 1997 213

Proof. Let H be a nontrivial proper subgroup of G. If g€ G is such that
K=g 'Hg # H, then, by Lagrange’s theorem, H N K = 1. Also, by LEmMMA 1,

|KH|=|K|-|H|/|IHNK|=p?=|Gl,

because |K|=|H|=p and |H NK|=1. Therefore G=KH, and so g~' =kh for
some k€K and h €H. But k=g 'h'g for some h' €H, and so g~' =g~ 'h'gh.
Hence g =(h')"'h~! € H, a contradiction.

Now we can prove the main result:

THEOREM. Every group G of order p? is abelian.

Proof. If G is cyclic we have nothing to prove, so let G be a noncyclic group and
use Lagrange’s theorem to get two distinct subgroups H and K of G, each of order
p. Then HNK=1; by LEMMA 2, H and K are normal in G. Moreover, every
element of H commutes with every element of K, because the normality of H and K
in G implies that hkh~'k~' € HNK for all h€ H, k € K. Also,

HI K] _

|HK| = [HNK|

p?=IGl,

which yields G = HK. Since H and K are abelian, the last two results imply that G is
abelian.
We conclude with two remarks:

1. The proof shows that G is either cyclic of order p* or isomorphic to the direct
product of two cyclic groups, each of order p.
2. One could apply the following theorem instead of LEMMA 2.

THEOREM. Suppose that G is finite and that p is the smallest prime divisor of |Gl. If
H is a subgroup of index p in G, then H is normal in G.

There are many proofs of this theorem (see, e.g., [1], [4, p. 75], [5, p. 166)); for an
elementary proof, see [2] or [3].
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The Relation Between the Root and Ratio Tests

DAVID CRUZ-URIBE, SFO
Trinity College
Hartford, CT 06106-3100

Two well-known tests for the convergence of a series ¥,_,a,, a, # 0, are the ratio

test and the root test:

n?

Ratio Test: If

A+l

n—o® n

then the series La, converges.
We call the values a, ., /a,, n =0, the consecutive ratios of the series.

Root Test: If

lim |a,|"" <1 (2)

n—o

then the series La, converges.

(For proofs, see Krantz [1] or Rudin [2].)

Since the limit in (1) is always greater than or equal to the limit in (2), the root test
is stronger than the ratio test: there are cases in which the root test shows conver-
gence but the ratio test does not. (In fact, the ratio test is a corollary of the root test:
see Krantz [1].)

We can illuminate the relationship between these two tests with a simple calcula-
tion:

1/n

a, n

G 4

lim |a,|"" = lim
n->00 now |[Gy_1 Gy_g a; 4

ay_ ay

(The last equality holds since ay/™ — 1 as n — .) The right-hand side is the limit of
the geometric means of the first n consecutive ratios of the series. In other words,
while the ratio test depends on the behavior (in the limit) of each consecutive ratio,
the root test only considers the average behavior of these ratios. Clearly, if all the
consecutive ratios get small then their average value will get small as well. The
converse is false, which is why the root test is stronger. Thus, for example, the ratio
test fails on the rearranged geometric series

1/241+1/8+1/4+1/32+1/16+ -, (3)

since the consecutive ratios alternate in value between 2 and 1/8. However, the
geometric mean of the first 2n consecutive ratios is

1 1/2n
‘2"-§ =1/2,

so the root test shows that the series converges.


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 70, NO. 3, JUNE 1997 215

Interpreting the root test in terms of averages suggests substituting another mean
for the geometric mean. By the arithmetic-geometric mean inequality, the arithmetic
mean of n consecutive ratios of a series is always larger than their geometric mean.
This yields a new convergence test:

Arithmetic Mean Test: If

then the series La, converges.

This test is stronger than the ratio test but weaker than the root test. However, in
some cases it may be easier to compute the arithmetic mean of the consecutive ratios
than it is to compute their geometric mean. For example, consider the series Xa,,
where the a,’s are defined inductively by

) _ log(1+1/(n+1))
G=h AT o F Dlog(n +2)

n>1.

By I'Hépital’s rule,

n-—>o

so the ratio test fails. To apply the root test we would have to evaluate the limit

= log(1+1/(k+1))
k=1

lim

n—o

The arithmetic mean test, however, requires only the following calculation:

1 & | log(l+1/(k+1) | " 1 1
mn Z log(k + 1)log(k + 2) —nh_r)lgo kz(log(k+l) log(k+2))

pe L1 1
e n\Tog2 " Tog(n +2)

3|

n——)

Hence the series converges.

An example of a series for which the arithmetic mean test fails is series (3) above:
In this case the arithmetic mean of the consecutive ratios converges to 17/16. As a
exercise for the reader we leave the problem of determining the values of «,
0 < a <1, for which the convergence of a similar rearrangement of Za" can be
shown using the arithmetic mean test.
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Another Proof of the Fundamental Theorem
of Algebra

DANIEL J. VELLEMAN
Ambherst College
Ambherst, MA 01002

Recently, while teaching a course in Complex Analysis, I amused myself (and, I hope,
my students) by having my students work out the details of several different proofs of
the Fundamental Theorem of Algebra. It is interesting that the theorem follows from
a number of important principles of Complex Analysis. For example, there are proofs
based on Liouville’s Theorem ([6], p. 138), Rouché’s Theorem ([8], p. 295), the
Maximum Principle ([6], p. 152), Picard’s Theorem ([3]), and the Cauchy Integral
Theorem ([4]). Even the elementary proof in [5], [7], and [10] (whose idea can be
traced back to d’Alembert; see [9], pp. 195-198) is based on a fundamental property
that distinguishes the complex numbers from the real numbers, namely, that every
complex number has at least one nth root for every positive integer n.

When my course reached the subject of power series, it occurred to me that it
might be possible to prove the Fundamental Theorem of Algebra from the fact that
entire functions can always be represented by power series. Unable to find such a
proof in the literature, I came up with the following proof*:

THEOREM. Suppose P(z) =a,+a,z +ayz*+ ... +a,z" is a polynomial of degree
n > 0 with complex coefficients. Then for some complex number z, P(z) = 0.

Proof. Suppose not. Then, the function f(z)=1/P(z) is entire, and therefore can
be represented by a power series throughout the complex plane; ie., there are
complex numbers by, by, by, ... such that for all complex numbers z,

f(z)=by+bz+byz>+....
The key to the proof is the following observation:

LEMMA. There are positive real numbers ¢ and r such that for infinitely many k,
by > erk.

To see why the theorem follows, consider substituting 1/r for z in the power
series. For infinitely many k we have

Ibkzkl = |bk|/7”k >c> 0,

so the series diverges, since the terms are not approaching 0. But this is a contradic-
tion, since the series was supposed to converge to f(z) for all z.

Proof of the Lemma: Since f(z) =1/P(z), we have

1=P(2)f(z) =(a,+az+a,z*+ ... +a,z")(by+ bz +byz* +...).

'T have recently learned that a similar proof was discovered by Alexander Abian and James Wilson; see
[2]. Abian has also given a proof of the Fundamental Theorem of Algebra based on Laurent series rather
than Taylor series; see [1]. I would like to thank the referee for pointing out references [1], [9], and [10] to
me.
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Multiplying out the right-hand side and equating it to the constant function 1, we find
that ayb, =1, so a, # 0 and b, # 0, and from the coefficient of z**",

(*) aobk+ll+[l1bk+,l_1 +...+(lnbk=0f0rallk20.

Since b, # 0, we can choose ¢ so that 0 < ¢ <|b|. Since a, # 0, we can choose r
so that > 0 and

laglr™ +lalr" ™t + ... +la,_,lr <la,l.

(Note that the left-hand side of this inequality is 0 when r =0, so by continuity the
inequality will be true for any sufficiently small positive 7. In fact, the inequality is
easily seen to be true if r < min{l, la,|/(la|+la,|+ ... +la,_,D}.)

We already know that |by| > ¢ = cr®. Now suppose |by| > cr*. We will show that for
some i between 1 and n, |b, ;| > cr¥*!, which will establish the lemma.

Suppose not. Then, by equation (*), we have

_ IaObk+n +(llbk+n—l +... +dn—1bk+1|
by | =
la,|

< laglby s, +lallbyr, i 1+ .. +la,_y by, |
- la,l

- lagler* ™™ +laler* "1 + .. +la,_ lerk*!

la,|

n
ok laglr™ +la,lr" "t + ... +la,_,|Ir

la,|

Scrk,

contradicting the fact that |b;|> cr*. This completes the proof of the lemma.

Note that the proof above actually gives a bound on the size of the smallest root of
P(z). Since the radius of convergence of the power series for f(z) is at most 1/r,
where r is chosen as in the lemma, there must be some z with |z| < 1/r such that
P(z)=0. It turns out that this is the same as the bound given by the proof of the
Fundamental Theorem via Rouché’s Theorem.
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On the Differentiability of /xsin(l/t) dt and
0 X

f sin(In t) dt
0

PAUL FISHBACK, NICHOLAS CEGLAREK, AND

TOBIAS MOLESKI

Grand Valley State University
Allendale, Ml 49401

Introduction Several recent articles ([2], [3], [4]) have focused on an interesting
class of functions that do not satisfy all the hypotheses of the first fundamental
theorem of calculus. A function f in this class has the following properties:

(a) f is defined and bounded on the interval [0, 1];
(b) f is continuous on (0, 1];
(©) lim, , o+f(x) does not exist.

It follows from (a) and (b) that the Riemann integral [;f(t)dt exists for every
x €[0,1]. However, whether this integral is right-differentiable at the origin, ie.,
whether

1w
lim —[Of(t) dt

xs0*t X

exists, cannot be answered from (a)—(c) alone. The articles of Ricci ([4]) and Klippert
([3D consider, respectively, the functions

_ [sin(l/x) if0<x<1 _ [sin(In(x)) if0<x<1
H(®) {1 fxoo 9 S() {1 ifx=0

These authors show that

1w _
lim —fofl(t)dt—o

x>0+ X
but
1 r>
lim —ffz(t) dt does not exist.
x>0+ X Jg

What differences between f; and f, cause the different outcomes above? Klippert
conjectured that the varying degrees of oscillation, as evidenced by the different
spacing between the zeros of the two functions, explains the difference. He formulates
a conjecture to this effect, which implies that if a function f in the above class
possesses infinitely many zeros and if these zeros satisfy a certain placement condition,
then lim, , o /5f(¢) dt/x exists. Several examples support this conjecture, including
f1. fe, and the oscillating sawtooth functions discussed in [2].

It may be surprising, then, that Klippert’s conjecture is false. For a function f in
the above-mentioned class, no condition phrased solely in terms of the location of the
sequence of zeros of f is sufficient to imply that lim  _, o [¢f(¢) dt /x exists.
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A counterexample To see why this is so, let {a,} be any sequence contained in
(0,1] such that a; =1, a,,, <a,, and lim, . @, =0. Then one may construct a
subsequence {a, } such that

n>

(i) @, =ag; (it) @, < ank-%.

For each positive integer k, let i, be any function satisfying the following conditions:
(1) ¢ is continuous on [0, 1];
@ () #0exe(a, ,a,)and x&{a,};
) Y () < 1, with ¢ (x) = (= DF for at least one x;
@ 1 () = (=D} | < a, /.

Such a function can be constructed to be continuous and piecewise-linear. For
example, if k is even then i, might have a graph like Ficure 1.

o

Dy Xy —1 Uppv1 Ay
FIGURE 1
Constructing a counterexample

Now define

ifx=0

0= {‘Pk(x) if @, <x<a,.

Note that f satisfies conditions (a)~(c) above, and has {a,} as its set of zeros on (0, 1].
The boundedness of the integrand, the properties of the subsequence {«, }, and
condition (4) imply the following inequalities:

| [ at) =~ (-v*

P ALORIGHNE!

ny

;,1—- [0 = 0 e+ g [ () = (<))
1 5 kel
k T

It follows that lim, ,.,1/a, [5f(#)dt does not exist.

The role of the derivative The preceding argument shows that placement of zeros
alone is not a determining factor. But it does not explain why lim , _, , [ sin g(¢) dt /x
exists for g(¢) = 1/t and not for g(¢) = In t. The difference can be explained in terms
of these two functions’ derivatives. Both derivatives are unbounded as ¢ | 0, but one
grows more quickly in magnitude than the other. The following theorem tells how
quickly the magnitude of g’ must grow in order for lim, _, ; /¢ sin g(¢) dt /x to exist.
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THEOREM 1. Let g be a continuously differentiable function on (0,1), such that g’
is monotone and g(t) either increases to +% or decreases to — as t | 0. Suppose,
further, that

lim ¢tg'(¢t) =L, where —» <L <.
t->0*

Then
lim 1 “sin| (¢) dt
x>0t X Jy g
exists if and only if L = + .

In the proof we will use the following straightforward corollary to Bonnet’s form of
the second mean value theorem for integrals (see, e.g., [1, pp. 311, 328]):

PROPOSITION. Suppose that m is a monotone function on [y, x] and that p is
bounded and integrable on [y, x]. Then there exists { in [y, x] such that

f:p(t)m(t) dt=m(y)[:.p(t) dt+m(x)f:p(t) dt.

Proof of the theorem. ~ Assume first that L = +. For x sufficiently close to zero and
for 0 <y <x, one may write

1 11 ,
Efysmg(t)dt—;fy 0 sin g(t)g'(t) dt.

Because 1/g’ is monotone on [y, x] and sin(g)-g’ is continuous there as well, the
corollary asserts that for some ¢ in the interval [y, x],

%f:sin g (1) dt
=1[Lfsm (g (1) dt+ —— [ sin(g(1)) '(t)dt]
e ), EE g'(x) J e

l 1
gty os ) o5 6(00) = 5 (cos (x) —cos () |
If we let y {0 and then x |0, we obtain
i
lll‘(f)l 7, “sin g(t)dt=

as desired.

To prove the converse, assume that L is finite and, without loss of generality, that
g(t) increases to ® as t|0. Suppose that 0 <y <x. Integrating by parts and
rearranging terms yields

fxsi,n g(t)dt=xsin g(x) —ysin g(y)
y

+f:(L — tg'(t))cos g(t) dt—Lj:cos g (t) dt.
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Integrating the last integral by parts again and rearranging terms, we obtain

fyxsin g(t)dt=xsing(x) —ysin g(y)
—l-fyx(L —tg'(t))cos g(t) dt — Lx cos g(x) + Ly cos g(y)
+Lfyx(L—tg'(g))sin g(t) dt—szyxsin g(t)dt.

Equivalently,

1 _ sin g(x) — Lcos g(x)
xfysm g(t)dt Y

ysing(y) ., Lycosg(y)
(1+L2)x (1+ L)«

f (L —tg'(t))cos g(t) dt

_|..
(1 +L2
L (L -tg'(t))si .
s, (E e @) e) d
Now choose >0 small enough so that |L —tg'(£)I<1/(2(1 +|L])) whenever

0 <t < 8. Then, for x <8, the sum of the last two integrals is bounded in absolute
value by 1/(2(1 + L?)). Hence

1 px _ sin g(x) — Lcos g(x)
'xftsmg(t)dt —3

+‘Lycosg(y)’+1].
x 2

o
T 1+12

Letting y | 0 yields

1 _sing(x)—Lcosg(x)| 1 1
lxj(;smg(t)dt 712 <31+

whenever 0 <x < 8.

Since g increases continuously to % as t |0, there exists a sequence {x,} €(0,1)
that converges to zero and that satisfies g(x,) = (2n + D)7r/2 for all sufficiently large
n. For such n,

1

(=D"|_
To(1+12)°

1+12

1 o
'qfo sin g(t) dt —
This implies that lim,, _, ., /¢ sin g(¢) dt/x, does not exist, and completes the proof.

Notes The use of the second mean value theorem for integrals in the preceding
proof is inspired by van der Corput’s lemma, a classical result in the theory of
trigonometric series. This lemma, which estimates oscillatory integrals, is a useful tool
for constructing a uniformly convergent trigonometric series that diverges absolutely

(cf. [5, p. 197D.
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Theorem 1 only scratches the surface of the class of functions described at the
beginning of this paper. For example, the theorem clearly holds when the sine is
replaced by the cosine, but one might ask what happens when the sine is replaced by
any periodic function or, indeed, by any continuous, bounded function. Such ques-
tions could prompt interesting undergraduate research.

Acknowledgment. The two student authors (Ceglarek and Moleski) were supported by the Grand Valley
State University Summer Undergraduate Research Program and the Council on Undergraduate Research.
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GEORGE T. GILBERT, Editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by November 1, 1997.

1524. Proposed by Ted Zerger, Kansas Wesleyan University, Salina, Kansas.
Given AABC, let A’, B',C’ be the points on the sides BC,CA, AB, respectively,
such that
BA’_CB’_AC’_t O<t<l
BC  AC AB 7 2"
Let A", B", C" be the points of intersection of AA" and CC’, BB’ and AA’,CC’ and
BB’, respectively. Prove that the ratios
AA': A"B":B"A'=BB":B"C":C"B'=CC":C"A" : A"C' =¢:1—2¢:t2.
1525. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York.

Define a mapping f: S, — S, as follows. Given a permutation 7 of {1,2,...,n},
express it in cycle form, including any fixed elements, such that the smallest entry of
each cycle appears last, and the last entries among cycles appear in increasing order.

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an e-mail
address.
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The permutation f(7) is then defined by removing all inner parentheses and
interpreting the result as the one-line representation of f(). In other words, the ith
entry of the line is f(a)(i). (For example, expressed in this cycle form,
F((4,6,1)2)5,3)) = (4,2,6,3,1X5).) Characterize those 7 fixed by f, and determine
their cardinality.

1526. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

Let p be an odd prime number, and let @ and b be positive integers with
1 <a <p. Find the number of ordered pairs (x, y) of positive integers such that p
divides x +ay and x +y <bp.

1527. Proposed by |. C. Binz, University of Bern, Bern, Switzerland.

For n a nonnegative integer, let A, =(a, )o.; <, be the (n+1)X(n+1)
matrix defined by @, , =a, ;=1 and

Ak =@ gy TIMa;_y 3y (i,k=1).
Show that A, is symmetric, and evaluate a, ;.
1528. Proposed by Florin S. Pirvinescu, Slatina, Romania.

Let M be a point in the interior of convex polygon A A,... A,. If d; is the
distance from M to A, A, (A, =A)), show that

(dy +d5)(dy +dy) -+ (d, +dy) <2" cos" - MA,-MA, -+ - MA

n?

and determine when equality holds.

Quickies

Answers to the Quickies are on page 229.

Q865. Proposed by Michael Andreoli, Miami Dade Community College (North
Campus), Miami, Florida.

Balls numbered 1 through n are placed in an urn and drawn out randomly without
replacement. Before each draw a player is allowed to guess the number to be drawn,
and is told only whether the guess is right or wrong. If the player guesses 1 until it is
correct, then switches to 2 until it is correct or all balls are drawn, then switches to 3
until it is correct or all balls are drawn, and so forth until all balls are drawn, what is
the expected number of correct guesses? What happens as n — oo?

Q866. Proposed by Larry Hoehn, Austin Peay State University, Clarksville, Ten-
nessee.

If a, b, and ¢ are positive real numbers, find the greatest lower bound and least

upper bound of
a®+b*+ac
V(a+b2)(a® + b2+ +2ac)

Q867. Proposed by David Callan, University of Wisconsin, Madison, Wisconsin.

Show that the number of (n — 1)-element subsets of {1,2,..., kn} whose sum is
divisible by n is given by (nk_"l) /n.

(These are the Catalan numbers when k =2. The corresponding problem for
n-element subsets with n prime and k = 2 was Problem 6 on the 1995 IMO.)
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Solutions

An Exponential Inequality June 1996

1499. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

For positive numbers x and y, prove that x* +y¥ >x¥ + y*, with equality if and
only if x=y.

Solution by Kee-Wai Lau, Hong Kong.

If x =y, it is clear that both sides of the proposed inequality are equal. So we may
now assume without loss of generality that x > y.

If y<l<x, then x*>xY and yY>y", with at least one inequality strict, so
xtyY>af +yt

Now let f(#)=¢*—¢¥ for y <t <x. We have f'(¢t)=xt*"" —ytY~'. We want to
show that f'(¢) > 0, which is clear in the case 1 <y <x. Because f'(¢t) > 0 if and only
if t*7Y >y/x, in the case y <x <1 it suffices to show that y*™¥ >y /x, or (x —
yny—Iny+Inx>0. Set g(x)=(x—y)ny—Iny+Inx. Now g(y)=0, g(1)
=—ylny>0, and g"(x)=—1/x*><0. If g(x) <0 at some point in (y,1), the
derivative of g Would change from non-positive to positive at a pair of points on the
interval, and g” would be positive at some point in the interval. We conclude that
g(x) >0, hence f ()>0. In both of these two cases, f is strictly increasing, so
Ffx)>f(y) or x* +y¥ >x¥+y.

Comments. Several readers listed among the solvers below pointed out that this
problem was proposed by Weixuan Li and Edward T. H. Wang as problem 303 in The
College Mathematics Journal 16 (1985), p. 224, and proposed by M. Laub as problem
E3116 in The American Mathematical Monthly 92 (1985), p. 666, with solutions
appearing in The College Mathematics Journal 18 (1987), pp. 164-165, and The
American Mathematical Monthly 97 (1990), pp. 65—67, respectively. Problem E3116
included the generalization to

Xt ag e ba =l b afe 4 e b,

where (y,,..., y,) is any permutation of (x,,..., x,).
Many of the incorrect solutions erred in multiplying two inequalities that could
involve negative numbers.

Also solved by H. Azad and Asghar Qadir and A. B. Thaheem (Saudi Arabia), Evgenii S. Freidkin,
Murray S. Klamkin (Canada), David E. Manes, Phil McCartney, Can A. Minh (student), Stephen Noltie,
Heinz-Jiirgen Seiffert (Germany), Volkhard Schindler (Germany), Southern Oregon State Problem Solvers
Group, TAMUK Problem Solvers, Michael Vowe (Switzerland), Edward T. H. Wang (Canada), and the
proposer. There were sixteen incorrect solutions.

A Limit Point of Triangles June 1996
1500. Proposed by Saul Stahl, University of Kansas, Lawrence, Kansas.

Let r be a positive real number and let A A, B,C, be equilateral. For each n >0
let A,,, and B, d1v1de the sides A, B, and A,,Cn, respectively, in the internal

ratio r:1,and set C,., =A,. If P= hm,, ~»AA,B,C,, prove that the measures of
L ByPC,, £LC,PA,, and £ A o PB,, form an arithmetic progression.

Composite of solutions due to Volkhard Schindler, Berlin, Germany, and Ted Zerger,
Kansas Wesleyan University, Salina, Kansas.
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Because the measures of £ B,PC,, £C,PA,, and £ A,PB, sum to 360°, it suffices
to show that £C,PA, = 120°. Representing A,, B,, and C, by complex numbers,
there is no loss of generality in assuming A, =0, B, =1, and C, = exp(mi/3). Set
s=r/(r+1)<1. Then it is easy to see that, for n >0,

A,=A,_ | +s"exp(2mi(n—1)/3).
From the periodicity of the complex exponential function, we obtain

P=lim A, =(s"+s*+s"+ )+ (s +s>+s*+ - )exp(27i/3)

+ (s +s°+s%+ - )exp(4mi/3)

s 52 (_l \/§)+ 83( 1 \/-37)

p TR RN 373

2
25 +s2 \/§82 .
= + i.
2(1+s+s%)  2(l+s+s?)

1—s3

We can now determine the distances A P =s/V1+s+s® and C,P =
1/V1+s+s®. Using the law of cosines, we find that cos 2C,PA = —1/2 or
£ CyPA, = 120°, completing the proof.

Also solved by ]. C. Binz (Switzerland), Milton P. Eisner, Michael Vowe (Switzerland), Paul J. Zwier,
and the proposer.

Palindromic Numbers in Arithmetic Progressions June 1996

1501. Proposed by Matids Harminc and Roman Sotdk, §af¢im’k University, KoSice,
Slovakia.

Which nonconstant arithmetic progressions of positive integers, excluding those for
which every term is a multiple of 10, contain infinitely many palindromic numbers? (A
palindromic number is unchanged when the order of its digits is reversed, for example
121 or 1331.)

Solution by Jack C. Abad, University of San Francisco, San Francisco, California.
We prove that all nonconstant arithmetic progressions, excluding those for which
every term is a multiple of 10, contain infinitely many palindromic numbers.
Every such arithmetic progression contains an arithmetic progression of the form

{a,a+b10% a+2-b10%,...},

where 10 does not divide a, ged(b,10) =1, and d > 0. Thus, it suffices to prove the
claim for such arithmetic progressions.

With this assumption, let + be the number formed by the last d digits of a, let s be
the number formed by these d digits written in reverse order, and let ¢(b) be the
number of integers less than and relatively prime to b. For each positive integer k,
the number

S.10(k—l)¢(b)+d+l + 10(k—l)¢(b)+d + 10(k—2)¢(b)+d + e +10¢(b)+d + ].Od +r

is clearly palindromic. By Euler’s theorem, 10/9®) =1 (mod b), so that this number
lies in the arithmetic progression

{a,a+b10? a+2-b10%,...}
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if and only if
e-r_ .
k= o7 8 10 (mod b).

There are infinitely many such k, hence infinitely many palindromic numbers in every
nonconstant arithmetic progression, excluding those for which every term is a multiple
of 10.

Also solved by the proposer. There was one incomplete solution.

A Characteristic Polynomial June 1996
1502. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York.

Let n and k be positive integers satisfying 1 <k <n. Find the characteristic
polynomial of the n X n matrix

0 0 I,
L= 0 1 0|,
I, 0 0

where I, denotes the m X m identity matrix.

Solution by David Callan, University of Wisconsin, Madison, Wisconsin.
More generally, suppose T = T(a, b, ¢) is the n X n matrix

0 0 I,
0 I, 0],
I, 0 0

with b > 1. Note that T is a permutation matrix T,., where 7 is the permutation of
{1,2,...,n} determined by right multiplication by T of the standard basis of row
vectors. The characteristic polynomial of T, depends only on 7’s cycle structure since
(i) the eigenvalues of a k X k cyclic permutation matrix are the kth roots of unity; and
(ii) if 7,77, --- . is a disjoint cycle factorization of 7, then T, is similar to a direct
product of cyclic permutation matrices corresponding to the 7,’s. Thus the character-
istic polynomial of T, is IT;_ (x™!— 1).

To determine 7’s cycle structure, set d =ged(a +b,b+c¢). Also let A, B,C
denote the intervals of integers [1,al,[a+1,a +bl[a+b+1,a+b +c], respec-
tively, so that 7 permutes A U B U C. Observe that

i+b+c ifi€A,
m(i)={i+c—a ifi€B,
i—-a—-b ifieC.

In particular, since d divides b + ¢, ¢ —a, and a + b, 7 preserves congruence classes
mod d. For any interval of integers [, let J(i) denote the set of integers in | that are
congruent to i (mod d). Thus for i € AU B U C, the orbit of i under 7 is contained
in A1) UB@) U C(i).

We claim the orbit of i under 7 equals A(i) UB(i) U C(i). To establish this,
suppose the orbit of i intersects A, B and C in x, y, and z elements, respectively.
From the definition of 7, this means that

x(b+c)ty(c—a)+z(—a—b)=0,
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or, equivalently,
(x+y)(b+c)=(y+z)(a+b).

Clearly, 0 <x <|A®i)], 0 <y <|B(), and 0 <z <|C(i)]. The claim will follow if we
can show that the only such integral solutions to the equation are (x, y, z) = (0,0,0)
and (| AL, |B()L,IC()D. (Since a nonempty cycle containing i exists, the latter
possibility must actually be the solution.) Because (a +b)/d and (b +c)/d are
relatively prime, it follows that (a +b)/d divides x +y. Furthermore,

0<x+y<IAG) +1B(i) = 2.

This forces (x,y) to be (0,0) or (JA(DL[B(@)D. Similarly, (y,z)=1(0,0) or
(IB()I,1C(#)]). Combining results yields (x, y, z) =(0,0,0) or (|A(:)|, B, |1C)D,
proving our claim.

Thus 7 has exactly d cycles, each comprising a congruence class modulo d. Writing
n=qd +r with 0 <r <d, it is now easy to count that 7 has r cycles of length g + 1
and d —r cycles of length g. Therefore, the characteristic polynomial of T, is
(29" = 1)"(x7=1)*". When a=n—k, b=1, and ¢c=k—1, we have d=
ged(n + 1,k),r=d — 1, and characteristic polynomial (x"* D/ — 1)4=1(yx(n+D/d~1
= D.

Also solved by J. C. Binz (Switzerland) and the proposer. There were one incorrect and two incomplete
solutions.

Sums of Reciprocals of Logarithms of Binomial Coefficients June 1996
1503. Proposed by Nick Lord, Tonbridge School, Kent, England.

Does the sequence (ZZ; 1 /ln(;l ))n=2 converge?

Solution by Edward Schmeichel, San Jose State University, San Jose, California.
The sequence diverges to infinity. Since In x is an increasing function, we have

kl=In2+mn3+ - +Ink> ['Inxde>k(nk 1),
1

implying k!> (k/e)*. Thus,

(1)< <)

and so
1 S 1 1
n en\* k(L+lnn—Ink)"
ln(k) ln(k)

Differentiating, we see that x(1 + In n — In x) increases on 1 <x < n. Thus, we obtain

- n—1
1 n dx
; (n > Z k(A +n-Ink) f s mn g _r(d+hn).
In k

This latter expression goes to infinity as n does, proving the assertion.

Also solved by Con Amore Problem Group (Denmark), David Callan, and the proposer. There was one
incorrect solution.
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Answers

Solutions to the Quickies on page 224.

A865. For j=1,2,...,n, define the random variable X; to be 1 if the ball numbered
j is correctly guessed and 0 if not. The expected number of correct guesses is the sum
of the expected values of the X;. Now observe that X; =1 if and only if, within the
sequence of n draws from the urn, ball 1 precedes balI’2 which precedes ball 3,.

which precedes ball ] Thus the probablhty that X; =1is 1/j!. The expected number

of correct guesses is 17 + 31 + 37 + - + a7, which approaches e—1lasn—om
A866. The greatest lower bound and least upper bound are 0 and 1, respectively. Set
0= a’+b%+ac
V(a® +b2)(a® +b% +c? + 2ac)

Applying the law of cosines to the figure below, we have Q = cos 6. Since 0° < § < 90°,
it follows that 0 < Q < 1. Setting b = 1, the values 0 and 1 are approached as a — 0,
c¢—», and a =1, ¢ > 0, respectively.

A867. Let & denote the collectlon of (n — 1)-element subsets of {1,2,..., kn} and,
for j=1to k, let

L={(j-Dn+1,(j—n+2,. .., jn}.

Define ¢: & —& as “increment each element by 1” with addition taken modulo n in
such a way that each I, is preserved. Clearly, ¢ is a permutation of & consisting
entirely of (disjoint) n-cycles. Working modulo n, ¢ adds n — 1 (or subtracts 1) from
the sum of the elements of each {x,..., x,_,} €«. Hence this sum hits each residue
class modulo n exactly once in each cycle (orbit) of ¢. So

n—1
{{xl,...,xn_l} € Y, x =i (modn)}

j=1

is the same for all i, 1 <i <n, and the result follows. (The integrality of (nkf 1) /n
also follows from the identity (nk_"l)/n = (k:) (k- 1)(n_ 1) )
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PAUL J. CAMPBELL, editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to
the editors.

Velleman, Daniel J., Fermat’s Last Theorem and Hilbert’s program, Mathematical Intelli-
gencer 19 (1) (Winter 1997) 64-67.

Maybe, despite Wiles’s proof being correct, Fermat’s Last Theorem isn’t true after all—
maybe a counterexample will be found. “Should we say that what Wiles has established is
not that Fermat’s Last Theorem is true, but rather that if ZF [Zermelo-Fraenkel set theory]
is consistent then Fermat’s Last Theorem is true? ... Must we believe in the existence of
the universe of all sets, and the truth of the ZF axioms for this universe, to be convinced
that Wiles’s proof can be trusted?” Author Velleman raises this question to remind us of
the unresolved state of the foundations of mathematics.

Shurman, Jerry, Geometry of the Quintic, Wiley, 1997; xi 4+ 200 pp, $39.95 (P). ISBN
0-471-13017-6.

This book reviews Felix Klein’s Lectures on the Icosahedron and Equations of the Fifth
Degree from a modern mathematical perspective. Marvelous mathematics enters, from
classifying the groups of automorphisms of the Riemann sphere and finding and inverting
generators for them, to the relationship between the icosahedral group and the quintic, to
reduction of the general quintic to Brioschi form by radicals, plus Doyle and McMullen’s
1989 iterative solution to the quintic. This is a book that helps the reader—advanced under-
graduate, graduate, or faculty seminar participant—realize and appreciate the connections
between branches of mathematics, in the context of solving an engaging problem.

Korner, T.W., The Pleasures of Counting, Cambridge University Press, 1996; x + 534 pp,
$59.95, $34.95 (P). ISBN 0-521-56087-X, 0-521-56823—4.

“Question How do you tell whether a mathematician is an extrovert or an introvert? An-
swer Extrovert mathematicians look at your feet when they talk to you.” (p. 226). Prof.
Korner’s book is extroverted in a more usual sense; it draws the reader into mathematics by
starting from problems and experience in the real world and surrounds the problems with
a rich context of history and perspective. A major source is warfare (strategies for subma-
rine warfare, radar, Richardson’s theory of arms races and his statistics of deadly quarrels,
and the Enigma cipher machine) but other topics cast a wider net (cholera and statistics,
biological scaling, the Lorentz transformation, classic algorithms, Braess’s paradox, design
of anchors, and the extinction of surnames, among others). He projects an aura of math-
ematics as an intellectual activity. The book is intended for “able” high-school students
and first-year undergraduates, but it requires comfort with mathematical notation, toler-
ance for algebraic calculation, and (at a few well-advertised points) calculus. (The index
is inadequate: None of “introvert,” “extrovert,” nor “anchor” appears; and the von Koch
snowflake curve of pp. 215-219 cannot be found under “Koch,” “snowflake,” or “curve,”
but only under “length of curve” and the dubiously alphabetized “von Koch.”)

230
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Ivars Peterson’s “MathLand,” and Keith Devlin’s “Devlin’s Angle,” both linked from MAA
Online at http://vwww.maa.org/.

The MAA has devoted considerable effort to its Web site, which features two regular
columns. Peterson’s “Mathland” offers a weekly one- or two-page article on a mathematical
topic, in the Martin Gardner style (i.e., no equations) and with references. Recent topics
have included a new Mersenne prime, Tom Stoppard’s play Arcadia, deceptive features of
graphing calculator displays, and map coloring. “Devlin’s Angle” is a monthly, featuring
epimathematical topics, such as the myth that the value of pi was once legislated to be 3,
a letter to a new college student, and how the year 2001 will not bring a computer like
HAL in the film 2001: A Space Odyssey. In short, MAA Online gives readers more of what
writers Peterson (Science News) and Devlin (the MAA newsletter Focus) do well.

Devlin, Keith, Soft mathematics: The mathematics of people, http://forum. swarthmore.
edu/social/articles/softmath.short.html. Are mathematicians turning soft? http:
//www.maa.org/devlin/devlinangle_april.html. Goodbye, Descartes: The End of Logic
and the Search for a New Cosmology of the Mind, Wiley, 1997; x + 301 pp, $27.95. ISBN
0-471-14216-6.

Editor Devlin is promoting the idea and use of soft mathematics, “a genuine attempt to
blend mathematics with other approaches in trying to analyze or describe some phenom-
enon.” He goes on to say that “Just as counterfeit mathematics is not mathematics, so
too soft mathematics is not mathematics ... [but] can lead to real (hard) mathematics.”
His examples involve the use of mathematical notations or techniques because of their ab-
stractness and conciseness. His motivation is that the social sciences are not mathematical
sciences—put another way, mathematics has failed “in our attempts to understand the hu-
man world of people and minds”—hence the opening for mathematics of another texture.
In Goodbye, Descartes (let me not repeat its apocalyptic subtitle), he “describes the entire
history of Mankind’s quest for a mathematical science of human reasoning and communica-
tion,” concluding that “the existing techniques of logic and mathematics ... are inadequate
for understanding the human mind.”

Math Forum: A Virtual Center for Math Education on the Internet, at http://forum.
swarthmore.edu/.

An outgrowth of its predecessor Geometry Forum, sponsor of the Usenet newsgroups sci.
math.geometry.*, the Math Forum at Swarthmore College is a Web site funded by the
National Science Foundation. The site intends to develop a “distributed, universal index
... for up-to-date, comprehensive access to all of the sites and individual pages available
for mathematics education” (no doubt these phrases are taken directly from the grant
application!). The home page offers access to geometry topics, humanistic mathematics,
public understanding of mathematics, and more.

Arney, David C. (ed.), Interdisciplinary Lively Application Projects (ILAPs), MAA, 1997;
xi + 222 pp, $27.50 ($22 for MAA members). ISBN 0-88385-706-5.

This volume contains eight small-group project handouts in applications of mathematics,
plus related materials (background, sample solutions, and a short student technical writing
guide) and short articles about the ongoing effort to produce ILAPs. Each project takes
from six to ten hours of student effort, and the backgrounds required in mathematics and in
concepts from the application area are carefully specified. The topics of the eight projects
are aerobic fitness, building a deck, landing from a parachute jump, flexibility of aircraft
wings, backpacking to Pike’s Peak, smog and inversions in the Los Angeles basin, designing
bridge supports, and the diffusion of groundwater contaminants.
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Bruss, F. Thomas, The fallacy of the two envelopes problem, Mathematical Scientist 21
(1996) 112-119.

A conundrum that has been making the rounds goes as follows: “Two envelopes contain
respectively an amount of money and twice that much. You are offered one of the envelopes,
drawn at random. Before you open it, you are offered the opportunity to switch and claim
the other envelope instead; should you switch?” Let the first envelope contain $S. The rea-
soning supporting the switch is that the other envelope contains either $25 or $5/2, each
with probability 1/2; so the expected value of its contents is 0.5(2S + S/2) = 1.255 > S.
Author Bruss points out the fallacy involved by carefully distinguishing the relevant sam-
ple space, and he describes an analogous deterministic fallacy. The two-envelopes fallacy is
philosophical in nature, proceeding from using the same representation (notation) equivo-
cally for two different concepts; but convincing mathematicians is one thing, and explaining
it to your Aunt Mathilda is another.

Gallian, Joseph A., Error detection methods, ACM Computing Surveys 28 (3) (September
1996) 504-517.

Gallian presents in detail and concretely the use of check digits for error detection and cor-
rection, showing applications to the Universal Product Code (UPC), credit cards, banking,
and blood banks. Many methods in use, such as modulus 9 and modulus 7 schemes (used
on USPS money orders, VISA travelers checks, airline tickets, and FedEx and UPS pack-
ages), are distinctly inferior—they do not detect even all single-digit errors. Only German
bank notes use a noncommutative system, based on the dihedral group Djg; this scheme
detects all single-digit errors and all transposition errors involving adjacent digits. Why
not a check digit for phone numbers? That might prevent the half dozen “wrong number”
calls that you get every week at home (and the other half dozen at the office).

Pickover, Clifford A., The Loom of God: Mathematical Tapestries at the Edge of Time,
Plenum, 1997; 292 pp, $29.95. ISBN 0-306-45411—4.

“Mathematics is the loom upon which God weaves the fabric of the universe.” How are
mathematics and religion related? Author Pickover has tackled a tough topic and written
a very engaging book. He begins with Pythagoreanism, explores numerology and kabala,
finds fractals in mandalas and in quipus, investigates the geometry of Stonehenge, and
considers “mathematical” arguments for the existence of God (including one by Gdédel).
Happily, there is no mention of the modern mysticism of the Great Pyramid; in fact, Egypt
and Babylon are scarcely mentioned. Each chapter begins with an episode of science fiction
(people from the future visit the past) and ends with a section on “The Science behind
the Science Fiction.” Curiously, God gets deleted from the famous quotation by Kronecker
(“Die ganze Zahl schuf der liebe Gott, alles Uebrige ist Menschenwerk”) in Pickover’s weak
(and ungrammatical) rendering of it as “The primary source of all mathematics are the
integers” (p. 81).

Artifact. Time 149 (18) (5 May 1997) 26.

Roger Penrose is suing Kimberly-Clark, manufacturers of toilet paper with embossings
similar to a Penrose pattern. The pattern is practical—indentings along it quilt the paper
and make it seem more bulky, despite there being less paper. “When ... the population of
Great Britain [is] invited ... to wipe their bottoms on what appears to be the work of a
Knight of the Realm without his permission, then a last stand must be taken.” Or at least
a long sit. Meanwhile, descendants of Leibniz are planning to sue every mathematician,
scientist, and engineer for unauthorized use of the integral sign ... .
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Hubbard, Barbara Burke, The World According to Wavelets: The Story of a Mathematical
Technique in the Making, A K Peters, 1996; xix + 264 pp, $34. ISBN 1-56881-047-4.

Suppose that you are a science writer who “carefully avoided all math courses” in college
but is asked to write a popular account of a new development in mathematics—say, for
example, wavelets. At what mathematical level should you pitch the writing? Author
Hubbard answers that question by providing a “plain English” (no formulas) account about
wavelets, focusing on the intuition, applications, and people involved in developing the field;
these chapters take up about 40% of the book. In the account are embedded short boxes
that tempt the reader to turn to a mathematical explanation of details, to be found in
short sections in a part of the book entitled “Beyond Plain English.” This “hypertext”
approach works well. An appendix notes mathematical symbols used, offers a few proofs,
gives references to other books, and tells where to get wavelets software.

Devlin, Keith, Mathematics: The Science of Patterns, Scientific American Library, 1997;
viii + 216 pp, $19.95 (P). ISBN 0-7167—6022-3. Stein, Sherman, Strength in Numbers:
Discovering the Joy and Power of Mathematics in Everyday Life, Wiley, 1996; xiii + 272
pp, $24.95. ISBN 0-471-15252-8. Wells, David, You Are a Mathematician: A Wise and
Witty Introduction to the Joy of Numbers, Wiley, 1995; viii + 424 pp, $24.95. ISBN 0-471-
18077-7. Adams, William J., Get a Grip on Your Math and Get a Firmer Grip on Your
Math, Kendall/Hunt, 1996; xiii + 256 pp, $18.95 (P), vii + 290 pp, $18.95 (P).

Whenever I visit a bookstore, I check the section on mathematics, which is usually less than
half a shelf at the bottom of the one bookcase devoted to the sciences. Next time you visit
a bookstore, you may find some of the books listed above, which are all by mathematicians
and all intended for the general reader. I am curious how the general reader (GR) would
choose among them; which should I recommend? Would GR opt for Devlin: the slimmest,
no exercises and few equations, with utterly beautiful color illustrations (the other books
have none)? This book invites you to dip in at almost any page that you open it to. Would
GR instead be impressed with the practical appeal of the Adams books, which investigate
statistics, probability, optimization, and applications of mathematics in an informal way
(only Firmer Grip has exercises)? Perhaps GR’s interest would be caught by the chapter
titles of Stein’s book (e.g., “All There Is to Know about Fractions,” “How to Read Math-
ematics,” “A Fresh Look at Kindergarten”), which treats epimathematical topics (reform
of mathematics education, what computers can/can’t do, myths about mathematics), re-
views elementary mathematics in interesting fashion, and undertakes a gentle introduction
to calculus. The GR who opens Wells’s book will realize right away that it will make for
an active read, since boxed problems appear every few pages (with solutions at the end of
each chapter). The book is the longest and the print is notably the smallest, but this is the
book for those who want to learn by doing.

Bukiet, Bruce, Elliotte Rusty Harold, and José Luis Palacios, A Markov chain approach to
baseball, Operations Research 45 (1) (January—February 1997) 14-23.

Columns by Ian Stewart in Scientific American in 1996 have revived interest in analysis of
the game of Monopoly as a Markov chain (see “Take a walk on the Boardwalk,” by Stephen
D. Abbott and Matt Richey, in College Mathematics Journal 28 (3) (May 1997) 162-171).
Now, on to baseball! Authors Bukiet et al. use a Markov chain to evaluate the performance
of a baseball team, to determine the effect of each player on team performance (and hence
the anticipated effect of player trades), and to find the optimal batting order. Are you
wondering what their predictions are for the league-leaders in the 1997 season? American
League: Yankees (East), Indians (Central), Mariners (West); National League: Marlins or
Braves (tie; Marlins win playoff) (East), Cardinals (Central), Padres (West).


http://www.jstor.org/page/info/about/policies/terms.jsp

NEWS AND LETTERS

Twenty-Fifth Annual USA Mathematical Olympiad —
Problems and Solutions

1. Prove that the average of the numbers nsinn® (n = 2,4,6,...,180) is cot 1°.
Solution. All arguments of trigonometric functions will be in degrees. We need to
prove

2sin2 +4sin4 + -+ 4 178sin178 = 90 cot 1, (1)
which is equivalent to
2sin2-sinl+2(2sin4-sinl) +--- 4+ 89(2sin178-sin1) = 90cos 1. (2)
Using the identity 2sina - sinb = cos(a — b) — cos(a + b), we find

2sin2-sinl+2(2sin4 -sin1) + --- + 89(2sin 178 - sin 1)
= (cos1 — cos3) + 2(cos3 — cos5) + - - - + 89(cos 177 — cos 179)
=cosl+cos3 + cosd+ -+ cos175+ cos177 — 89 cos 179
=cos1+ (cos3 + cos177) + - - + (cos 89 + cos91) — 89 cos 179
=cosl+89cos1l =90cos],

so (1) is true.

Second Solution. This solution uses complex numbers. Let Rez and Im 2 denote
the real part and the imaginary part, respectively, of the complex number z. We
use the relation sinn = Im e*™™/180 together with the summation formula

Iv-|-$2+-~--|-x"—na:"+1 x—an+1 nwn-i—l
22 4 ... n — — _ 1.
z+2z°+ - +nx T -2 1-z (z#1)

Let w = €™/90 = cos2 + i sin2. Then w® = —1 and

w 1 2
Im -—(l—w)2 =Im (———————wl/2_w_1/2) =0.
Thus

2sin2 +4sind + --- 4 178sin178 = 2Im(w + 2w? 4 3w + - - - + 89w?)
w+1 89 1 w+(1-w) 89
(1-—w)2+1—w]—21m[ 1—w)p l—w]

-1/2
= 2Im 20 — 180Tm —%
l1—-w

=2Im

m =90cot 1.

2. For any nonempty set S of real numbers, let ¢(S) denote the sum of the
elements of S. Given a set A of n positive integers, consider the collection of all
distinct sums o(S) as S ranges over the nonempty subsets of A. Prove that this
collection of sums can be partitioned into n classes so that in each class, the ratio
of the largest sum to the smallest sum does not exceed 2.

234
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Solution. Let A = {a1,as,... ,a,} Wherea; < az < ---<a,. Fori =1,2,... ,n
let s; = a; + a2 + - - - + a; and take so = 0. All the sums in question are less than
or equal to s,, and if o is one of them, we have

8;—1 <0 < 8; (1)

for an appropriate i. Divide the sums into n classes by letting C; denote the class
of sums satisfying (1). We claim that these classes have the desired property. To
establish this, it suffices to show that (1) implies

1
Esi<a_<_s,'. 2)

Suppose (1) holds. The inequality a; + a2 + - -+ + a;—1 = s;—1 < o shows that the
sum o contains at least one addend aj with k£ > i. Then since then a; > a;, we
have

8$;—0 <8 —8-1=a; L ar L0,

which together with o < s; implies (2).

Note. The result does not hold if 2 is replaced by any smaller constant ¢. To see
this, choose n such that ¢ < 2 — 2~(®~1) and consider the set {1,...,2"'}. If this
set is divided into n subsets, two of 1,...,2""1,14 .. 427! must lie in the same
subset, and their ratio is at least (14 --- +2""1)/(2"1) =2 - 2-("=1) > ¢,

3. Let ABC be a triangle. Prove that there is a line £ (in the plane of triangle
ABC) such that the intersection of the interior of triangle ABC' and the interior of
its reflection A'B'C" in £ has area more than 2/3 the area of triangle ABC.

Solution. Let a,b, ¢ be the lengths of the sides BC,CA, AB, respectively; without
loss of generality a < b < ¢. Choose £ to be the angle bisector of ZA. Let P be the
intersection of £ with BC. Since AC < AB, the intersection of triangles ABC and
A'B'C' is the disjoint union of two congruent triangles, APC and APC'.

Considering BC as a base, triangles APC and ABC have equal altitudes, so their
areas are in the same ratio as their bases:

Area(APC) _ PC

Area(ABC) -~ BC’
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Since AP is the angle bisector of ZA, we have BP/PC = c/b, so

PC__PC___ 1
BC  BP+PC c/b+1

Thus it suffices to prove

_2 2
c/b+17 3

But 2b > a + b > ¢ by the triangle inequality, so ¢/b < 2 and thus (1) holds.

Note. Let F denote the figure given by the intersection of the interior of triangle
ABC and the interior of its reflection in £. Another approach to the problem
involves finding the maximum attained for Area(F)/Area(ABC) by taking £ from
the family of lines perpendicular to AB.

1)

c' C

By choosing the best alternative between the angle bisector at A and the optimal
line perpendicular to BC,

Area(F) N 2
Area(ABC) ~ 1++2

can be attained. This constant is in fact the best possible.

=2(V2 - 1) = 0.828427...

4. An n-term sequence (zi,Zs3,...,%,) in which each term is either 0 or 1 is
called a binary sequence of length n. Let a, be the number of binary sequences of
length n containing no three consecutive terms equal to 0, 1, 0 in that order. Let
b, be the number of binary sequences of length n that contain no four consecutive
terms equal to 0, 0, 1, 1 or 1, 1, 0, O in that order. Prove that b,4+1 = 2a, for all
positive integers n.

Solution. We refer to the binary sequences counted by (a,) and (b,) as “type A”

and “type B”, respectively. For each binary sequence (z,%s,...,%,) there is a
corresponding binary sequence (yo,¥1,- - - ,Yn) Obtained by setting yo = 0 and
Yi=T1+T2+---+2x; mod2, i=12,...,n. (1)

(Addition mod 2 is defined as follows: 0+0=1+1=0and0+1=1+0=1.)
Then

Ti=y;+¥y-1 mod2, i=12,...,n,
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and it is easily seen that (1) provides a one-to-one correspondence between the set
of all binary sequences of length n and the set of binary sequences of length n+1 in
which the first term is 0. Moreover, the binary sequence (z1,z2,... ,Z,) has three
consecutive terms equal to 0, 1, 0 in that order if and only if the corresponding
sequence (Yo, ¥1,--- ,Yn) has four consecutive terms equal to 0,0,1,10r 1, 1,0, 0
in that order, so the first is of type A if and only if the second is of type B. The set
of type B sequences of length n + 1 in which the first term is 0 is exactly half the
total number of such sequences, as can be seen by means of the mapping in which
0’s and 1’s are interchanged.

5. Triangle ABC has the following property: there is an interior point P such
that ZPAB = 10°, ZPBA = 20°, ZPCA = 30°, and ZPAC = 40°. Prove that
triangle ABC is isosceles.

Solution. All angles will be in degrees. Let = ZPCB. Then /PBC = 80 — z.
By the Law of Sines,

PAPBPC (sin éPBA) (sin APC’B) (sin éPAC)

T~ PBPCPA  \sinZPAB) \sinZPBC ) \sinZPCA
_ sin 20 sin z sin 40 _ 4sinzsin40cos 10
" 5in10sin(80 — z)sin30  sin(80 — x)

c

The identity 2sina - cosb = sin(a — b) + sin(a + b) now yields

1= 2sin 2(sin 30 4 sin 50) _ sin z(1 4 2 cos 40)
- sin(80 — x) T sin(80-z)

&)
2sinz cos40 = sin(80 — z) — sinz = 25sin(40 — z) cos 40.

This gives z = 40 — = and thus = = 20. It follows that ZACB = 50 = ZBAC, so
triangle ABC is isosceles.

Second Solution. Let D be the reflection of A across the line BP. Then triangle
APD is isosceles with vertex angle

ZAPD = 2(180 — ZBPA) = 2({PAB + ZABP) = 2(10 + 20) = 60,
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so it is equilateral. Also, ZDBA = 2/PBA = 40. Since ZBAC = 50, we have
DB 1 AC.

B

10°
30° 40°
c M A
D
Let E be the intersection of DB with CP. Then

/PED =180 — ZCED =180 — (90 — ZACE) = 90 + 30 = 120,

so ZPED + £ZDAP = 180. We deduce that the quadrilateral APED is cyclic, and
therefore ZDEA = ZDPA = 60. Finally, we note that ZDEA = 60 = ZDEC.
Since AC L DE, we find that A and C are symmetric across the line DE, which
implies that BA = BC, as desired.

6. Determine (with proof) whether there is a subset X of the integers with the
following property: for any integer n there is exactly one solution of a + 2b = n
with a,b € X.

Solution. Yes, there is such a subset. Note that (r,s) = (0,0),(1,0),(0,1),(1,1)
gives r + 25 = 0, 1,2, 3, respectively. Thus if the problem is restricted to the non-
negative integers, it is clear that the set of numbers whose representation in base
4 contains only the digits 0 and 1 has the desired property. To accommodate the
negative integers as well, we alter this constructlon shghtly by switching to “base

—4”. That is, we express a given integer as E o Ci(—4)%, with ¢; € {0,1,2,3}.
Let X be the set of numbers whose representation uses only the digits 0 and 1. In
view of the observation made at the beginning, the proof that X has the desired
property is complete once we show that every integer has a unique representation
in base —4.

Ezistence and Uniqueness. Given an integer n, choose k such that

0<n+3(4d+43+45 ... 442571) <4241 _ g
Then by means of the usual base 4 expansion, write
n+3@4+43+485 4. 42 = Zci‘li-
=0
Settlng d2i = Cy; and d2i-1 =3 - Coi-1 gives

Zd( —4) Zcz,& 2(3—@,_1)42’ t=n.

=0 =0
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Thus we have existence. To show base —4 representations are unique, let (c¢;) and
(d;) be two distinct finite sequences of elements from {0,1,2,3}, and let j the
smallest integer such that ¢; # d;. Then

k k
Y oci(-4) £ D di(-4)' (mod 4),
=0

=0

so the two numbers represented by (c;) and (d;) are distinct.

Thirty-Seventh Annual International Mathematical
Olympiad — Problems

1. We are given a positive integer r and a rectangular board ABC D with dimen-
sions |AB| = 20,|BC| = 12. The rectangle is divided into a grid of 20 x 12 unit
squares. The following moves are permitted on the board: one can move from one
square to another only if the distance between the centers of the two squares is /7.
The task is to find a sequence of moves leading from the square with A as a vertex
to the square with B as a vertex.

(a) Show that the task cannot be done if r is divisible by 2 or 3.
(b) Prove that the task is possible when r = 73.
(c) Is there a solution when r = 97?7

2. Let P be a point inside triangle ABC such that

LAPB — LACB = LAPC — LABC.

Let D, E be the incenters of triangles APB, APC, respectively. Show that AP, BD,C1
meet at a point.

3. Let S denote the set of nonnegative integers. Find all functions f on S taking
values in S such that

fm+ f(n)) = f(f(m))+ f(n) Vm,neSs.

4. The positive integers a and b are such that the numbers 15a+ 16b and 16a—15b
are both squares of positive integers. What is the least possible value that can be
taken on by the smaller of these two squares?

5. Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is
parallel to EF, and CD is parallel to FA. Let R4, Rc, Rg denote the circumradii
of triangles FAB, BCD,DEF, respectively, and let P denote the perimeter of the
hexagon. Prove that

vl

Ra+ Rc+ Rg 2>
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6. Let p,q,n be positive integers with p + ¢ < n. Let (zo,z;1,...,Z,) be an
(n + 1)-tuple of integers satisfying the following conditions:

(a) g =zn =0.
(b) For each 7 with 1 < i < n, either z; —z;—1 = por z; — ;-1 = —q.

Show that there exist indices ¢ < j with (3, j) # (0,n), such that z; = z;.

Notes

The 1996 USA Mathematical Olympiad was prepared by Titu Andreescu, Elgin
Johnston, Jim Propp, Cecil Rousseau (chair), Richard Stong, and Paul Zeitz.
The top eight students on the 1996 USAMO were (in alphabetical order):

Carl J. Bosley Topeka, KS
Christopher C. Chang Palo Alto, CA
Nathan G. Curtis Alexandria, VA
Michael R. Korn Arden Hills, MN
Carl A. Miller Bethesda, MD

Josh P. Nichols-Barrer Newton Center, MA
Alexander H. Saltman Austin, TX

Daniel P. Stronger New York, NY

Christopher Chang was the winner of the Greitzer-Klamkin award, given to the
top scorer on the USAMO. Members of the USA team at the 1996 IMO (Mumbai,
India) were Carl Bosley, Christopher Chang, Nathan Curtis, Michael Korn, Carl
Miller, and Alexander Saltman.

The training program to prepare the USA team for the IMO (the Mathematical
Olympiad Summer Program) was held at the University of Nebraska, Lincoln, NE.
Titu Andreescu, Elgin Johnston, Kiran Kedlaya, and Paul Zeitz served as instruc-
tors, assisted by Jeremy Bem and Jonathan Weinstein.

The booklet Mathematical Olympiads 1996 presents additional solutions to
problems on the 25th USAMO and solutions to the 37th IMO. This booklet is
available from:

Dr. Walter Mientka,
Department of Mathematics
University of Nebraska
Lincoln, NE 68588-0658.

Such a booklet has been published every year since 1976. Copies are $5.00 for each
year 1976-1996.

The USA Mathematical Olympiad, participation of the US team in the Interna-
tional Mathematical Olympiad, and the sequence of examinations leading to quali-
fication for these olympiads are under the administration of the M.A.A. Committee
on American Mathematical Competitions, and these activities are sponsored by
eight organizations of professional mathematicians. For further information about
this sequence of examinations, contact the Executive Director of the Committee,
Professor Mientka, at the above address.

This report was prepared by Cecil Rousseau, The University of Memphis.
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Constance Reid, an established writer about mathemati-
cians, has written. an excellent and loving book, about ber
sister Julia Robinson, the matbematician. The author bas
written that she wants the book to be one for all age
groups and she bas succeeded admirably in making it
s0.. Julia wanted to be known as a mathemalician, not a
woman mathematician and rightly so! However, she was,
and is, a wonderful role model for women aspiring to be
mathematician. What a great gift this book would be!
—Alice Schafer, Former President, AWM

This book is a small treasure, one which I want to share
with all my matbematical friends. The assembly of sev-
eral articles and additional photos and remarks provides
the image of a matbematician of extraordinary laste,
tenacity and generosity.... Julia Robinson broke ground
in displaying the deep connections between number the-
ory and logic. Her results bave led to a very active area
today, making the appearance of this book very timely.
Her work and ber example are bowever timeless and [
can think of no better advice to give a young mathe-
matician, either in how to do matbhematics. or bow to
bebave in mathematics, than: “Be like Julia!”

—Carol Wood, Deputy Director, MSRI

In high school Julia Bowman stood alone as the
only girl—and the best student—in her junior and
senior math classes. She had only one close friend
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